1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/system/wait_set_dispatcher.h"
#include <stdint.h>
#include <algorithm>
#include <utility>
#include "base/logging.h"
#include "mojo/edk/system/awakable.h"
namespace mojo {
namespace edk {
class WaitSetDispatcher::Waiter final : public Awakable {
public:
explicit Waiter(WaitSetDispatcher* dispatcher) : dispatcher_(dispatcher) {}
~Waiter() {}
// |Awakable| implementation.
bool Awake(MojoResult result, uintptr_t context) override {
// Note: This is called with various Mojo locks held.
dispatcher_->WakeDispatcher(result, context);
// Removes |this| from the dispatcher's list of waiters.
return false;
}
private:
WaitSetDispatcher* const dispatcher_;
};
WaitSetDispatcher::WaitState::WaitState() {}
WaitSetDispatcher::WaitState::WaitState(const WaitState& other) = default;
WaitSetDispatcher::WaitState::~WaitState() {}
WaitSetDispatcher::WaitSetDispatcher()
: waiter_(new WaitSetDispatcher::Waiter(this)) {}
Dispatcher::Type WaitSetDispatcher::GetType() const {
return Type::WAIT_SET;
}
MojoResult WaitSetDispatcher::Close() {
base::AutoLock lock(lock_);
if (is_closed_)
return MOJO_RESULT_INVALID_ARGUMENT;
is_closed_ = true;
{
base::AutoLock locker(awakable_lock_);
awakable_list_.CancelAll();
}
for (const auto& entry : waiting_dispatchers_)
entry.second.dispatcher->RemoveAwakable(waiter_.get(), nullptr);
waiting_dispatchers_.clear();
base::AutoLock locker(awoken_lock_);
awoken_queue_.clear();
processed_dispatchers_.clear();
return MOJO_RESULT_OK;
}
MojoResult WaitSetDispatcher::AddWaitingDispatcher(
const scoped_refptr<Dispatcher>& dispatcher,
MojoHandleSignals signals,
uintptr_t context) {
if (dispatcher == this)
return MOJO_RESULT_INVALID_ARGUMENT;
base::AutoLock lock(lock_);
if (is_closed_)
return MOJO_RESULT_INVALID_ARGUMENT;
uintptr_t dispatcher_handle = reinterpret_cast<uintptr_t>(dispatcher.get());
auto it = waiting_dispatchers_.find(dispatcher_handle);
if (it != waiting_dispatchers_.end()) {
return MOJO_RESULT_ALREADY_EXISTS;
}
const MojoResult result = dispatcher->AddAwakable(waiter_.get(), signals,
dispatcher_handle, nullptr);
if (result == MOJO_RESULT_INVALID_ARGUMENT) {
// Dispatcher is closed.
return result;
} else if (result != MOJO_RESULT_OK) {
WakeDispatcher(result, dispatcher_handle);
}
WaitState state;
state.dispatcher = dispatcher;
state.context = context;
state.signals = signals;
bool inserted = waiting_dispatchers_.insert(
std::make_pair(dispatcher_handle, state)).second;
DCHECK(inserted);
return MOJO_RESULT_OK;
}
MojoResult WaitSetDispatcher::RemoveWaitingDispatcher(
const scoped_refptr<Dispatcher>& dispatcher) {
uintptr_t dispatcher_handle = reinterpret_cast<uintptr_t>(dispatcher.get());
base::AutoLock lock(lock_);
if (is_closed_)
return MOJO_RESULT_INVALID_ARGUMENT;
auto it = waiting_dispatchers_.find(dispatcher_handle);
if (it == waiting_dispatchers_.end())
return MOJO_RESULT_NOT_FOUND;
dispatcher->RemoveAwakable(waiter_.get(), nullptr);
// At this point, it should not be possible for |waiter_| to be woken with
// |dispatcher|.
waiting_dispatchers_.erase(it);
base::AutoLock locker(awoken_lock_);
int num_erased = 0;
for (auto it = awoken_queue_.begin(); it != awoken_queue_.end();) {
if (it->first == dispatcher_handle) {
it = awoken_queue_.erase(it);
num_erased++;
} else {
++it;
}
}
// The dispatcher should only exist in the queue once.
DCHECK_LE(num_erased, 1);
processed_dispatchers_.erase(
std::remove(processed_dispatchers_.begin(), processed_dispatchers_.end(),
dispatcher_handle),
processed_dispatchers_.end());
return MOJO_RESULT_OK;
}
MojoResult WaitSetDispatcher::GetReadyDispatchers(
uint32_t* count,
DispatcherVector* dispatchers,
MojoResult* results,
uintptr_t* contexts) {
base::AutoLock lock(lock_);
if (is_closed_)
return MOJO_RESULT_INVALID_ARGUMENT;
dispatchers->clear();
// Re-queue any already retrieved dispatchers. These should be the dispatchers
// that were returned on the last call to this function. This loop is
// necessary to preserve the logically level-triggering behaviour of waiting
// in Mojo. In particular, if no action is taken on a signal, that signal
// continues to be satisfied, and therefore a |MojoWait()| on that
// handle/signal continues to return immediately.
std::deque<uintptr_t> pending;
{
base::AutoLock locker(awoken_lock_);
pending.swap(processed_dispatchers_);
}
for (uintptr_t d : pending) {
auto it = waiting_dispatchers_.find(d);
// Anything in |processed_dispatchers_| should also be in
// |waiting_dispatchers_| since dispatchers are removed from both in
// |RemoveWaitingDispatcherImplNoLock()|.
DCHECK(it != waiting_dispatchers_.end());
// |awoken_mutex_| cannot be held here because
// |Dispatcher::AddAwakable()| acquires the Dispatcher's mutex. This
// mutex is held while running |WakeDispatcher()| below, which needs to
// acquire |awoken_mutex_|. Holding |awoken_mutex_| here would result in
// a deadlock.
const MojoResult result = it->second.dispatcher->AddAwakable(
waiter_.get(), it->second.signals, d, nullptr);
if (result == MOJO_RESULT_INVALID_ARGUMENT) {
// Dispatcher is closed. Implicitly remove it from the wait set since
// it may be impossible to remove using |MojoRemoveHandle()|.
waiting_dispatchers_.erase(it);
} else if (result != MOJO_RESULT_OK) {
WakeDispatcher(result, d);
}
}
const uint32_t max_woken = *count;
uint32_t num_woken = 0;
base::AutoLock locker(awoken_lock_);
while (!awoken_queue_.empty() && num_woken < max_woken) {
uintptr_t d = awoken_queue_.front().first;
MojoResult result = awoken_queue_.front().second;
awoken_queue_.pop_front();
auto it = waiting_dispatchers_.find(d);
DCHECK(it != waiting_dispatchers_.end());
results[num_woken] = result;
dispatchers->push_back(it->second.dispatcher);
if (contexts)
contexts[num_woken] = it->second.context;
if (result != MOJO_RESULT_CANCELLED) {
processed_dispatchers_.push_back(d);
} else {
// |MOJO_RESULT_CANCELLED| indicates that the dispatcher was closed.
// Return it, but also implcitly remove it from the wait set.
waiting_dispatchers_.erase(it);
}
num_woken++;
}
*count = num_woken;
if (!num_woken)
return MOJO_RESULT_SHOULD_WAIT;
return MOJO_RESULT_OK;
}
HandleSignalsState WaitSetDispatcher::GetHandleSignalsState() const {
base::AutoLock lock(lock_);
return GetHandleSignalsStateNoLock();
}
HandleSignalsState WaitSetDispatcher::GetHandleSignalsStateNoLock() const {
lock_.AssertAcquired();
if (is_closed_)
return HandleSignalsState();
HandleSignalsState rv;
rv.satisfiable_signals = MOJO_HANDLE_SIGNAL_READABLE;
base::AutoLock locker(awoken_lock_);
if (!awoken_queue_.empty() || !processed_dispatchers_.empty())
rv.satisfied_signals = MOJO_HANDLE_SIGNAL_READABLE;
return rv;
}
MojoResult WaitSetDispatcher::AddAwakable(Awakable* awakable,
MojoHandleSignals signals,
uintptr_t context,
HandleSignalsState* signals_state) {
base::AutoLock lock(lock_);
// |awakable_lock_| is acquired here instead of immediately before adding to
// |awakable_list_| because we need to check the signals state and add to
// |awakable_list_| as an atomic operation. If the pair isn't atomic, it is
// possible for the signals state to change after it is checked, but before
// the awakable is added. In that case, the added awakable won't be signalled.
base::AutoLock awakable_locker(awakable_lock_);
HandleSignalsState state(GetHandleSignalsStateNoLock());
if (state.satisfies(signals)) {
if (signals_state)
*signals_state = state;
return MOJO_RESULT_ALREADY_EXISTS;
}
if (!state.can_satisfy(signals)) {
if (signals_state)
*signals_state = state;
return MOJO_RESULT_FAILED_PRECONDITION;
}
awakable_list_.Add(awakable, signals, context);
return MOJO_RESULT_OK;
}
void WaitSetDispatcher::RemoveAwakable(Awakable* awakable,
HandleSignalsState* signals_state) {
{
base::AutoLock locker(awakable_lock_);
awakable_list_.Remove(awakable);
}
if (signals_state)
*signals_state = GetHandleSignalsState();
}
bool WaitSetDispatcher::BeginTransit() {
// You can't transfer wait sets!
return false;
}
WaitSetDispatcher::~WaitSetDispatcher() {
DCHECK(waiting_dispatchers_.empty());
DCHECK(awoken_queue_.empty());
DCHECK(processed_dispatchers_.empty());
}
void WaitSetDispatcher::WakeDispatcher(MojoResult result, uintptr_t context) {
{
base::AutoLock locker(awoken_lock_);
if (result == MOJO_RESULT_ALREADY_EXISTS)
result = MOJO_RESULT_OK;
awoken_queue_.push_back(std::make_pair(context, result));
}
base::AutoLock locker(awakable_lock_);
HandleSignalsState signals_state;
signals_state.satisfiable_signals = MOJO_HANDLE_SIGNAL_READABLE;
signals_state.satisfied_signals = MOJO_HANDLE_SIGNAL_READABLE;
awakable_list_.AwakeForStateChange(signals_state);
}
} // namespace edk
} // namespace mojo
|