1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "remoting/protocol/spake2_authenticator.h"
#include <utility>
#include "base/base64.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/sys_byteorder.h"
#include "crypto/hmac.h"
#include "crypto/secure_util.h"
#include "remoting/base/constants.h"
#include "remoting/base/rsa_key_pair.h"
#include "remoting/protocol/ssl_hmac_channel_authenticator.h"
#include "third_party/boringssl/src/include/openssl/curve25519.h"
#include "third_party/libjingle_xmpp/xmllite/xmlelement.h"
namespace remoting {
namespace protocol {
namespace {
// Each peer sends 2 messages: <spake-message> and <verification-hash>. The
// content of <spake-message> is the output of SPAKE2_generate_msg() and must
// be passed to SPAKE2_process_msg() on the other end. This is enough to
// generate authentication key. <verification-hash> is sent to confirm that both
// ends get the same authentication key (which means they both know the
// password). This verification hash is calculated in
// CalculateVerificationHash() as follows:
// HMAC_SHA256(auth_key, ("host"|"client") + local_jid.length() + local_jid +
// remote_jid.length() + remote_jid)
// where auth_key is the key produced by SPAKE2.
const buzz::StaticQName kSpakeMessageTag = {kChromotingXmlNamespace,
"spake-message"};
const buzz::StaticQName kVerificationHashTag = {kChromotingXmlNamespace,
"verification-hash"};
const buzz::StaticQName kCertificateTag = {kChromotingXmlNamespace,
"certificate"};
std::unique_ptr<buzz::XmlElement> EncodeBinaryValueToXml(
const buzz::StaticQName& qname,
const std::string& content) {
std::string content_base64;
base::Base64Encode(content, &content_base64);
std::unique_ptr<buzz::XmlElement> result(new buzz::XmlElement(qname));
result->SetBodyText(content_base64);
return result;
}
// Finds tag named |qname| in base_message and decodes it from base64 and stores
// in |data|. If the element is not present then found is set to false otherwise
// it's set to true. If the element is there and it's content cound't be decoded
// then false is returned.
bool DecodeBinaryValueFromXml(const buzz::XmlElement* message,
const buzz::QName& qname,
bool* found,
std::string* data) {
const buzz::XmlElement* element = message->FirstNamed(qname);
*found = element != nullptr;
if (!*found)
return true;
if (!base::Base64Decode(element->BodyText(), data)) {
LOG(WARNING) << "Failed to parse " << qname.LocalPart();
return false;
}
return !data->empty();
}
std::string PrefixWithLength(const std::string& str) {
uint32_t length = base::HostToNet32(str.size());
return std::string(reinterpret_cast<char*>(&length), sizeof(length)) + str;
}
} // namespace
// static
std::unique_ptr<Authenticator> Spake2Authenticator::CreateForClient(
const std::string& local_id,
const std::string& remote_id,
const std::string& shared_secret,
Authenticator::State initial_state) {
return base::WrapUnique(new Spake2Authenticator(
local_id, remote_id, shared_secret, false, initial_state));
}
// static
std::unique_ptr<Authenticator> Spake2Authenticator::CreateForHost(
const std::string& local_id,
const std::string& remote_id,
const std::string& local_cert,
scoped_refptr<RsaKeyPair> key_pair,
const std::string& shared_secret,
Authenticator::State initial_state) {
std::unique_ptr<Spake2Authenticator> result(new Spake2Authenticator(
local_id, remote_id, shared_secret, true, initial_state));
result->local_cert_ = local_cert;
result->local_key_pair_ = key_pair;
return std::move(result);
}
Spake2Authenticator::Spake2Authenticator(const std::string& local_id,
const std::string& remote_id,
const std::string& shared_secret,
bool is_host,
Authenticator::State initial_state)
: local_id_(local_id),
remote_id_(remote_id),
shared_secret_(shared_secret),
is_host_(is_host),
state_(initial_state) {
spake2_context_ = SPAKE2_CTX_new(
is_host ? spake2_role_bob : spake2_role_alice,
reinterpret_cast<const uint8_t*>(local_id_.data()), local_id_.size(),
reinterpret_cast<const uint8_t*>(remote_id_.data()), remote_id_.size());
// Generate first message and push it to |pending_messages_|.
uint8_t message[SPAKE2_MAX_MSG_SIZE];
size_t message_size;
int result = SPAKE2_generate_msg(
spake2_context_, message, &message_size, sizeof(message),
reinterpret_cast<const uint8_t*>(shared_secret_.data()),
shared_secret_.size());
CHECK(result);
local_spake_message_.assign(reinterpret_cast<char*>(message), message_size);
}
Spake2Authenticator::~Spake2Authenticator() {
SPAKE2_CTX_free(spake2_context_);
}
Authenticator::State Spake2Authenticator::state() const {
if (state_ == ACCEPTED && !outgoing_verification_hash_.empty())
return MESSAGE_READY;
return state_;
}
bool Spake2Authenticator::started() const {
return started_;
}
Authenticator::RejectionReason Spake2Authenticator::rejection_reason() const {
DCHECK_EQ(state(), REJECTED);
return rejection_reason_;
}
void Spake2Authenticator::ProcessMessage(const buzz::XmlElement* message,
const base::Closure& resume_callback) {
ProcessMessageInternal(message);
resume_callback.Run();
}
void Spake2Authenticator::ProcessMessageInternal(
const buzz::XmlElement* message) {
DCHECK_EQ(state(), WAITING_MESSAGE);
// Parse the certificate.
bool cert_present;
if (!DecodeBinaryValueFromXml(message, kCertificateTag, &cert_present,
&remote_cert_)) {
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
// Client always expects certificate in the first message.
if (!is_host_ && remote_cert_.empty()) {
LOG(WARNING) << "No valid host certificate.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
bool spake_message_present = false;
std::string spake_message;
bool verification_hash_present = false;
std::string verification_hash;
if (!DecodeBinaryValueFromXml(message, kSpakeMessageTag,
&spake_message_present, &spake_message) ||
!DecodeBinaryValueFromXml(message, kVerificationHashTag,
&verification_hash_present,
&verification_hash)) {
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
// |auth_key_| is generated when <spake-message> is received.
if (auth_key_.empty()) {
if (!spake_message_present) {
LOG(WARNING) << "<spake-message> not found.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
uint8_t key[SPAKE2_MAX_KEY_SIZE];
size_t key_size;
started_ = true;
int result = SPAKE2_process_msg(
spake2_context_, key, &key_size, sizeof(key),
reinterpret_cast<const uint8_t*>(spake_message.data()),
spake_message.size());
if (!result) {
state_ = REJECTED;
rejection_reason_ = INVALID_CREDENTIALS;
return;
}
CHECK(key_size);
auth_key_.assign(reinterpret_cast<char*>(key), key_size);
outgoing_verification_hash_ =
CalculateVerificationHash(is_host_, local_id_, remote_id_);
expected_verification_hash_ =
CalculateVerificationHash(!is_host_, remote_id_, local_id_);
} else if (spake_message_present) {
LOG(WARNING) << "Received duplicate <spake-message>.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
if (spake_message_sent_ && !verification_hash_present) {
LOG(WARNING) << "Didn't receive <verification-hash> when expected.";
state_ = REJECTED;
rejection_reason_ = PROTOCOL_ERROR;
return;
}
if (verification_hash_present) {
if (verification_hash.size() != expected_verification_hash_.size() ||
!crypto::SecureMemEqual(verification_hash.data(),
expected_verification_hash_.data(),
verification_hash.size())) {
state_ = REJECTED;
rejection_reason_ = INVALID_CREDENTIALS;
return;
}
state_ = ACCEPTED;
return;
}
state_ = MESSAGE_READY;
}
std::unique_ptr<buzz::XmlElement> Spake2Authenticator::GetNextMessage() {
DCHECK_EQ(state(), MESSAGE_READY);
std::unique_ptr<buzz::XmlElement> message = CreateEmptyAuthenticatorMessage();
if (!spake_message_sent_) {
if (!local_cert_.empty()) {
message->AddElement(
EncodeBinaryValueToXml(kCertificateTag, local_cert_).release());
}
message->AddElement(
EncodeBinaryValueToXml(kSpakeMessageTag, local_spake_message_)
.release());
spake_message_sent_ = true;
}
if (!outgoing_verification_hash_.empty()) {
message->AddElement(EncodeBinaryValueToXml(kVerificationHashTag,
outgoing_verification_hash_)
.release());
outgoing_verification_hash_.clear();
}
if (state_ != ACCEPTED) {
state_ = WAITING_MESSAGE;
}
return message;
}
const std::string& Spake2Authenticator::GetAuthKey() const {
return auth_key_;
}
std::unique_ptr<ChannelAuthenticator>
Spake2Authenticator::CreateChannelAuthenticator() const {
DCHECK_EQ(state(), ACCEPTED);
CHECK(!auth_key_.empty());
if (is_host_) {
return SslHmacChannelAuthenticator::CreateForHost(
local_cert_, local_key_pair_, auth_key_);
} else {
return SslHmacChannelAuthenticator::CreateForClient(remote_cert_,
auth_key_);
}
}
std::string Spake2Authenticator::CalculateVerificationHash(
bool from_host,
const std::string& local_id,
const std::string& remote_id) {
std::string message = (from_host ? "host" : "client") +
PrefixWithLength(local_id) +
PrefixWithLength(remote_id);
crypto::HMAC hmac(crypto::HMAC::SHA256);
std::string result(hmac.DigestLength(), '\0');
if (!hmac.Init(auth_key_) ||
!hmac.Sign(message, reinterpret_cast<uint8_t*>(&result[0]),
result.length())) {
LOG(FATAL) << "Failed to calculate HMAC.";
}
return result;
}
} // namespace protocol
} // namespace remoting
|