1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef ContiguousContainer_h
#define ContiguousContainer_h
#include "base/compiler_specific.h"
#include "platform/PlatformExport.h"
#include "wtf/Alignment.h"
#include "wtf/Allocator.h"
#include "wtf/Compiler.h"
#include "wtf/Noncopyable.h"
#include "wtf/TypeTraits.h"
#include "wtf/Vector.h"
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
namespace blink {
// ContiguousContainer is a container which stores a list of heterogeneous
// objects (in particular, of varying sizes), packed next to one another in
// memory. Objects are never relocated, so it is safe to store pointers to them
// for the lifetime of the container (unless the object is removed).
//
// Memory is allocated in a series of buffers (with exponential growth). When an
// object is allocated, it is given only the space it requires (possibly with
// enough padding to preserve alignment), rather than the maximum possible size.
// This allows small and large objects to coexist without wasting much space.
//
// Since it stores pointers to all of the objects it allocates in a vector, it
// supports efficient iteration and indexing. However, for mutation the
// supported operations are limited to appending to, and removing from, the end
// of the list.
//
// Clients should instantiate ContiguousContainer; ContiguousContainerBase is an
// artifact of the implementation.
class PLATFORM_EXPORT ContiguousContainerBase {
DISALLOW_NEW();
WTF_MAKE_NONCOPYABLE(ContiguousContainerBase);
protected:
explicit ContiguousContainerBase(size_t maxObjectSize);
ContiguousContainerBase(ContiguousContainerBase&&);
~ContiguousContainerBase();
ContiguousContainerBase& operator=(ContiguousContainerBase&&);
size_t size() const { return m_elements.size(); }
bool isEmpty() const { return !size(); }
size_t capacityInBytes() const;
size_t usedCapacityInBytes() const;
size_t memoryUsageInBytes() const;
// These do not invoke constructors or destructors.
void reserveInitialCapacity(size_t, const char* typeName);
void* allocate(size_t objectSize, const char* typeName);
void removeLast();
void clear();
void swap(ContiguousContainerBase&);
// Discards excess buffer capacity. Intended for use when no more appending
// is anticipated.
void shrinkToFit();
Vector<void*> m_elements;
private:
class Buffer;
Buffer* allocateNewBufferForNextAllocation(size_t, const char* typeName);
Vector<std::unique_ptr<Buffer>> m_buffers;
unsigned m_endIndex;
size_t m_maxObjectSize;
};
// For most cases, no alignment stricter than pointer alignment is required. If
// one of the derived classes has stronger alignment requirements (and the
// static_assert fires), set alignment to the LCM of the derived class
// alignments. For small structs without pointers, it may be possible to reduce
// alignment for tighter packing.
template <class BaseElementType, unsigned alignment = sizeof(void*)>
class ContiguousContainer : public ContiguousContainerBase {
private:
// Declares itself as a forward iterator, but also supports a few more
// things. The whole random access iterator interface is a bit much.
template <typename BaseIterator, typename ValueType>
class IteratorWrapper
: public std::iterator<std::forward_iterator_tag, ValueType> {
DISALLOW_NEW();
public:
IteratorWrapper() {}
bool operator==(const IteratorWrapper& other) const {
return m_it == other.m_it;
}
bool operator!=(const IteratorWrapper& other) const {
return m_it != other.m_it;
}
ValueType& operator*() const { return *static_cast<ValueType*>(*m_it); }
ValueType* operator->() const { return &operator*(); }
IteratorWrapper operator+(std::ptrdiff_t n) const {
return IteratorWrapper(m_it + n);
}
IteratorWrapper operator++(int) {
IteratorWrapper tmp = *this;
++m_it;
return tmp;
}
std::ptrdiff_t operator-(const IteratorWrapper& other) const {
return m_it - other.m_it;
}
IteratorWrapper& operator++() {
++m_it;
return *this;
}
private:
explicit IteratorWrapper(const BaseIterator& it) : m_it(it) {}
BaseIterator m_it;
friend class ContiguousContainer;
};
public:
using iterator = IteratorWrapper<Vector<void*>::iterator, BaseElementType>;
using const_iterator =
IteratorWrapper<Vector<void*>::const_iterator, const BaseElementType>;
using reverse_iterator =
IteratorWrapper<Vector<void*>::reverse_iterator, BaseElementType>;
using const_reverse_iterator =
IteratorWrapper<Vector<void*>::const_reverse_iterator,
const BaseElementType>;
explicit ContiguousContainer(size_t maxObjectSize)
: ContiguousContainerBase(align(maxObjectSize)) {}
ContiguousContainer(size_t maxObjectSize, size_t initialSizeBytes)
: ContiguousContainer(maxObjectSize) {
reserveInitialCapacity(std::max(maxObjectSize, initialSizeBytes),
WTF_HEAP_PROFILER_TYPE_NAME(BaseElementType));
}
ContiguousContainer(ContiguousContainer&& source)
: ContiguousContainerBase(std::move(source)) {}
~ContiguousContainer() {
for (auto& element : *this) {
(void)element; // MSVC incorrectly reports this variable as unused.
element.~BaseElementType();
}
}
ContiguousContainer& operator=(ContiguousContainer&& source) {
// Must clear in the derived class to ensure that element destructors
// care called.
clear();
ContiguousContainerBase::operator=(std::move(source));
return *this;
}
using ContiguousContainerBase::size;
using ContiguousContainerBase::isEmpty;
using ContiguousContainerBase::capacityInBytes;
using ContiguousContainerBase::usedCapacityInBytes;
using ContiguousContainerBase::memoryUsageInBytes;
using ContiguousContainerBase::shrinkToFit;
iterator begin() { return iterator(m_elements.begin()); }
iterator end() { return iterator(m_elements.end()); }
const_iterator begin() const { return const_iterator(m_elements.begin()); }
const_iterator end() const { return const_iterator(m_elements.end()); }
reverse_iterator rbegin() { return reverse_iterator(m_elements.rbegin()); }
reverse_iterator rend() { return reverse_iterator(m_elements.rend()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(m_elements.rbegin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(m_elements.rend());
}
BaseElementType& first() { return *begin(); }
const BaseElementType& first() const { return *begin(); }
BaseElementType& last() { return *rbegin(); }
const BaseElementType& last() const { return *rbegin(); }
BaseElementType& operator[](size_t index) { return *(begin() + index); }
const BaseElementType& operator[](size_t index) const {
return *(begin() + index);
}
template <class DerivedElementType, typename... Args>
DerivedElementType& allocateAndConstruct(Args&&... args) {
static_assert(WTF::IsSubclass<DerivedElementType, BaseElementType>::value,
"Must use subclass of BaseElementType.");
static_assert(alignment % WTF_ALIGN_OF(DerivedElementType) == 0,
"Derived type requires stronger alignment.");
return *new (alignedAllocate(sizeof(DerivedElementType)))
DerivedElementType(std::forward<Args>(args)...);
}
void removeLast() {
ASSERT(!isEmpty());
last().~BaseElementType();
ContiguousContainerBase::removeLast();
}
DISABLE_CFI_PERF
void clear() {
for (auto& element : *this) {
(void)element; // MSVC incorrectly reports this variable as unused.
element.~BaseElementType();
}
ContiguousContainerBase::clear();
}
void swap(ContiguousContainer& other) {
ContiguousContainerBase::swap(other);
}
// Appends a new element using memcpy, then default-constructs a base
// element in its place. Use with care.
BaseElementType& appendByMoving(BaseElementType& item, size_t size) {
ASSERT(size >= sizeof(BaseElementType));
void* newItem = alignedAllocate(size);
memcpy(newItem, static_cast<void*>(&item), size);
new (&item) BaseElementType;
return *static_cast<BaseElementType*>(newItem);
}
private:
void* alignedAllocate(size_t size) {
void* result = ContiguousContainerBase::allocate(
align(size), WTF_HEAP_PROFILER_TYPE_NAME(BaseElementType));
DCHECK_EQ(reinterpret_cast<intptr_t>(result) & (alignment - 1), 0u);
return result;
}
static size_t align(size_t size) {
size_t alignedSize = alignment * ((size + alignment - 1) / alignment);
DCHECK_EQ(alignedSize % alignment, 0u);
DCHECK_GE(alignedSize, size);
DCHECK_LT(alignedSize, size + alignment);
return alignedSize;
}
};
} // namespace blink
#endif // ContiguousContainer_h
|