1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "platform/graphics/ImageFrameGenerator.h"
#include "SkData.h"
#include "platform/graphics/ImageDecodingStore.h"
#include "platform/image-decoders/ImageDecoder.h"
#include "platform/instrumentation/tracing/TraceEvent.h"
#include "third_party/skia/include/core/SkYUVSizeInfo.h"
#include "wtf/PtrUtil.h"
#include <memory>
namespace blink {
static bool compatibleInfo(const SkImageInfo& src, const SkImageInfo& dst) {
if (src == dst)
return true;
// It is legal to write kOpaque_SkAlphaType pixels into a kPremul_SkAlphaType
// buffer. This can happen when DeferredImageDecoder allocates an
// kOpaque_SkAlphaType image generator based on cached frame info, while the
// ImageFrame-allocated dest bitmap stays kPremul_SkAlphaType.
if (src.alphaType() == kOpaque_SkAlphaType &&
dst.alphaType() == kPremul_SkAlphaType) {
const SkImageInfo& tmp = src.makeAlphaType(kPremul_SkAlphaType);
return tmp == dst;
}
return false;
}
// Creates a SkPixelRef such that the memory for pixels is given by an external
// body. This is used to write directly to the memory given by Skia during
// decoding.
class ExternalMemoryAllocator final : public SkBitmap::Allocator {
USING_FAST_MALLOC(ExternalMemoryAllocator);
WTF_MAKE_NONCOPYABLE(ExternalMemoryAllocator);
public:
ExternalMemoryAllocator(const SkImageInfo& info,
void* pixels,
size_t rowBytes)
: m_info(info), m_pixels(pixels), m_rowBytes(rowBytes) {}
bool allocPixelRef(SkBitmap* dst, SkColorTable* ctable) override {
const SkImageInfo& info = dst->info();
if (kUnknown_SkColorType == info.colorType())
return false;
if (!compatibleInfo(m_info, info) || m_rowBytes != dst->rowBytes())
return false;
if (!dst->installPixels(info, m_pixels, m_rowBytes))
return false;
dst->lockPixels();
return true;
}
private:
SkImageInfo m_info;
void* m_pixels;
size_t m_rowBytes;
};
static bool updateYUVComponentSizes(ImageDecoder* decoder,
SkISize componentSizes[3],
size_t componentWidthBytes[3]) {
if (!decoder->canDecodeToYUV())
return false;
IntSize size = decoder->decodedYUVSize(0);
componentSizes[0].set(size.width(), size.height());
componentWidthBytes[0] = decoder->decodedYUVWidthBytes(0);
size = decoder->decodedYUVSize(1);
componentSizes[1].set(size.width(), size.height());
componentWidthBytes[1] = decoder->decodedYUVWidthBytes(1);
size = decoder->decodedYUVSize(2);
componentSizes[2].set(size.width(), size.height());
componentWidthBytes[2] = decoder->decodedYUVWidthBytes(2);
return true;
}
ImageFrameGenerator::ImageFrameGenerator(const SkISize& fullSize,
bool isMultiFrame,
const ColorBehavior& colorBehavior)
: m_fullSize(fullSize),
m_decoderColorBehavior(colorBehavior),
m_isMultiFrame(isMultiFrame),
m_decodeFailed(false),
m_yuvDecodingFailed(false),
m_frameCount(0) {}
ImageFrameGenerator::~ImageFrameGenerator() {
ImageDecodingStore::instance().removeCacheIndexedByGenerator(this);
}
bool ImageFrameGenerator::decodeAndScale(SegmentReader* data,
bool allDataReceived,
size_t index,
const SkImageInfo& info,
void* pixels,
size_t rowBytes) {
if (m_decodeFailed)
return false;
TRACE_EVENT1("blink", "ImageFrameGenerator::decodeAndScale", "frame index",
static_cast<int>(index));
// This implementation does not support scaling so check the requested size.
SkISize scaledSize = SkISize::Make(info.width(), info.height());
ASSERT(m_fullSize == scaledSize);
// It is okay to allocate ref-counted ExternalMemoryAllocator on the stack,
// because 1) it contains references to memory that will be invalid after
// returning (i.e. a pointer to |pixels|) and therefore 2) should not live
// longer than the call to the current method.
ExternalMemoryAllocator externalAllocator(info, pixels, rowBytes);
SkBitmap bitmap = tryToResumeDecode(data, allDataReceived, index, scaledSize,
&externalAllocator);
DCHECK(externalAllocator.unique()); // Verify we have the only ref-count.
if (bitmap.isNull())
return false;
// Check to see if the decoder has written directly to the pixel memory
// provided. If not, make a copy.
ASSERT(bitmap.width() == scaledSize.width());
ASSERT(bitmap.height() == scaledSize.height());
SkAutoLockPixels bitmapLock(bitmap);
if (bitmap.getPixels() != pixels)
return bitmap.copyPixelsTo(pixels, rowBytes * info.height(), rowBytes);
return true;
}
bool ImageFrameGenerator::decodeToYUV(SegmentReader* data,
size_t index,
const SkISize componentSizes[3],
void* planes[3],
const size_t rowBytes[3]) {
// TODO (scroggo): The only interesting thing this uses from the
// ImageFrameGenerator is m_decodeFailed. Move this into
// DecodingImageGenerator, which is the only class that calls it.
if (m_decodeFailed)
return false;
TRACE_EVENT1("blink", "ImageFrameGenerator::decodeToYUV", "frame index",
static_cast<int>(index));
if (!planes || !planes[0] || !planes[1] || !planes[2] || !rowBytes ||
!rowBytes[0] || !rowBytes[1] || !rowBytes[2]) {
return false;
}
std::unique_ptr<ImageDecoder> decoder = ImageDecoder::create(
data, true, ImageDecoder::AlphaPremultiplied, m_decoderColorBehavior);
// getYUVComponentSizes was already called and was successful, so
// ImageDecoder::create must succeed.
ASSERT(decoder);
std::unique_ptr<ImagePlanes> imagePlanes =
WTF::makeUnique<ImagePlanes>(planes, rowBytes);
decoder->setImagePlanes(std::move(imagePlanes));
ASSERT(decoder->canDecodeToYUV());
if (decoder->decodeToYUV()) {
setHasAlpha(0, false); // YUV is always opaque
return true;
}
ASSERT(decoder->failed());
m_yuvDecodingFailed = true;
return false;
}
SkBitmap ImageFrameGenerator::tryToResumeDecode(
SegmentReader* data,
bool allDataReceived,
size_t index,
const SkISize& scaledSize,
SkBitmap::Allocator* allocator) {
TRACE_EVENT1("blink", "ImageFrameGenerator::tryToResumeDecode", "frame index",
static_cast<int>(index));
ImageDecoder* decoder = 0;
// Lock the mutex, so only one thread can use the decoder at once.
MutexLocker lock(m_decodeMutex);
const bool resumeDecoding =
ImageDecodingStore::instance().lockDecoder(this, m_fullSize, &decoder);
ASSERT(!resumeDecoding || decoder);
SkBitmap fullSizeImage;
bool complete =
decode(data, allDataReceived, index, &decoder, &fullSizeImage, allocator);
if (!decoder)
return SkBitmap();
// If we are not resuming decoding that means the decoder is freshly
// created and we have ownership. If we are resuming decoding then
// the decoder is owned by ImageDecodingStore.
std::unique_ptr<ImageDecoder> decoderContainer;
if (!resumeDecoding)
decoderContainer = WTF::wrapUnique(decoder);
if (fullSizeImage.isNull()) {
// If decoding has failed, we can save work in the future by
// ignoring further requests to decode the image.
m_decodeFailed = decoder->failed();
if (resumeDecoding)
ImageDecodingStore::instance().unlockDecoder(this, decoder);
return SkBitmap();
}
bool removeDecoder = false;
if (complete) {
// Free as much memory as possible. For single-frame images, we can
// just delete the decoder entirely. For multi-frame images, we keep
// the decoder around in order to preserve decoded information such as
// the required previous frame indexes, but if we've reached the last
// frame we can at least delete all the cached frames. (If we were to
// do this before reaching the last frame, any subsequent requested
// frames which relied on the current frame would trigger extra
// re-decoding of all frames in the dependency chain.)
if (!m_isMultiFrame)
removeDecoder = true;
else if (index == m_frameCount - 1)
decoder->clearCacheExceptFrame(kNotFound);
}
if (resumeDecoding) {
if (removeDecoder)
ImageDecodingStore::instance().removeDecoder(this, decoder);
else
ImageDecodingStore::instance().unlockDecoder(this, decoder);
} else if (!removeDecoder) {
ImageDecodingStore::instance().insertDecoder(this,
std::move(decoderContainer));
}
return fullSizeImage;
}
void ImageFrameGenerator::setHasAlpha(size_t index, bool hasAlpha) {
MutexLocker lock(m_alphaMutex);
if (index >= m_hasAlpha.size()) {
const size_t oldSize = m_hasAlpha.size();
m_hasAlpha.resize(index + 1);
for (size_t i = oldSize; i < m_hasAlpha.size(); ++i)
m_hasAlpha[i] = true;
}
m_hasAlpha[index] = hasAlpha;
}
bool ImageFrameGenerator::decode(SegmentReader* data,
bool allDataReceived,
size_t index,
ImageDecoder** decoder,
SkBitmap* bitmap,
SkBitmap::Allocator* allocator) {
ASSERT(m_decodeMutex.locked());
TRACE_EVENT2("blink", "ImageFrameGenerator::decode", "width",
m_fullSize.width(), "height", m_fullSize.height());
// Try to create an ImageDecoder if we are not given one.
ASSERT(decoder);
bool newDecoder = false;
bool shouldCallSetData = true;
if (!*decoder) {
newDecoder = true;
if (m_imageDecoderFactory)
*decoder = m_imageDecoderFactory->create().release();
if (!*decoder) {
*decoder = ImageDecoder::create(data, allDataReceived,
ImageDecoder::AlphaPremultiplied,
m_decoderColorBehavior)
.release();
// The newly created decoder just grabbed the data. No need to reset it.
shouldCallSetData = false;
}
if (!*decoder)
return false;
}
if (!m_isMultiFrame && newDecoder && allDataReceived) {
// If we're using an external memory allocator that means we're decoding
// directly into the output memory and we can save one memcpy.
ASSERT(allocator);
(*decoder)->setMemoryAllocator(allocator);
}
if (shouldCallSetData)
(*decoder)->setData(data, allDataReceived);
ImageFrame* frame = (*decoder)->frameBufferAtIndex(index);
// For multi-frame image decoders, we need to know how many frames are
// in that image in order to release the decoder when all frames are
// decoded. frameCount() is reliable only if all data is received and set in
// decoder, particularly with GIF.
if (allDataReceived)
m_frameCount = (*decoder)->frameCount();
(*decoder)->setData(PassRefPtr<SegmentReader>(nullptr),
false); // Unref SegmentReader from ImageDecoder.
(*decoder)->clearCacheExceptFrame(index);
(*decoder)->setMemoryAllocator(0);
if (!frame || frame->getStatus() == ImageFrame::FrameEmpty)
return false;
// A cache object is considered complete if we can decode a complete frame.
// Or we have received all data. The image might not be fully decoded in
// the latter case.
const bool isDecodeComplete =
frame->getStatus() == ImageFrame::FrameComplete || allDataReceived;
SkBitmap fullSizeBitmap = frame->bitmap();
if (!fullSizeBitmap.isNull()) {
ASSERT(fullSizeBitmap.width() == m_fullSize.width() &&
fullSizeBitmap.height() == m_fullSize.height());
setHasAlpha(index, !fullSizeBitmap.isOpaque());
}
*bitmap = fullSizeBitmap;
return isDecodeComplete;
}
bool ImageFrameGenerator::hasAlpha(size_t index) {
MutexLocker lock(m_alphaMutex);
if (index < m_hasAlpha.size())
return m_hasAlpha[index];
return true;
}
bool ImageFrameGenerator::getYUVComponentSizes(SegmentReader* data,
SkYUVSizeInfo* sizeInfo) {
TRACE_EVENT2("blink", "ImageFrameGenerator::getYUVComponentSizes", "width",
m_fullSize.width(), "height", m_fullSize.height());
if (m_yuvDecodingFailed)
return false;
std::unique_ptr<ImageDecoder> decoder = ImageDecoder::create(
data, true, ImageDecoder::AlphaPremultiplied, m_decoderColorBehavior);
if (!decoder)
return false;
// Setting a dummy ImagePlanes object signals to the decoder that we want to
// do YUV decoding.
std::unique_ptr<ImagePlanes> dummyImagePlanes =
WTF::wrapUnique(new ImagePlanes);
decoder->setImagePlanes(std::move(dummyImagePlanes));
return updateYUVComponentSizes(decoder.get(), sizeInfo->fSizes,
sizeInfo->fWidthBytes);
}
} // namespace blink
|