File: ImageDecoder.cpp

package info (click to toggle)
chromium-browser 57.0.2987.98-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 2,637,852 kB
  • ctags: 2,544,394
  • sloc: cpp: 12,815,961; ansic: 3,676,222; python: 1,147,112; asm: 526,608; java: 523,212; xml: 286,794; perl: 92,654; sh: 86,408; objc: 73,271; makefile: 27,698; cs: 18,487; yacc: 13,031; tcl: 12,957; pascal: 4,875; ml: 4,716; lex: 3,904; sql: 3,862; ruby: 1,982; lisp: 1,508; php: 1,368; exp: 404; awk: 325; csh: 117; jsp: 39; sed: 37
file content (551 lines) | stat: -rw-r--r-- 20,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * Copyright (C) Research In Motion Limited 2009-2010. All rights reserved.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this library; see the file COPYING.LIB.  If not, write to
 *  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 *
 */

#include "platform/image-decoders/ImageDecoder.h"

#include "platform/PlatformInstrumentation.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/graphics/BitmapImageMetrics.h"
#include "platform/image-decoders/FastSharedBufferReader.h"
#include "platform/image-decoders/bmp/BMPImageDecoder.h"
#include "platform/image-decoders/gif/GIFImageDecoder.h"
#include "platform/image-decoders/ico/ICOImageDecoder.h"
#include "platform/image-decoders/jpeg/JPEGImageDecoder.h"
#include "platform/image-decoders/png/PNGImageDecoder.h"
#include "platform/image-decoders/webp/WEBPImageDecoder.h"
#include "wtf/PtrUtil.h"
#include <memory>

namespace blink {

inline bool matchesJPEGSignature(const char* contents) {
  return !memcmp(contents, "\xFF\xD8\xFF", 3);
}

inline bool matchesPNGSignature(const char* contents) {
  return !memcmp(contents, "\x89PNG\r\n\x1A\n", 8);
}

inline bool matchesGIFSignature(const char* contents) {
  return !memcmp(contents, "GIF87a", 6) || !memcmp(contents, "GIF89a", 6);
}

inline bool matchesWebPSignature(const char* contents) {
  return !memcmp(contents, "RIFF", 4) && !memcmp(contents + 8, "WEBPVP", 6);
}

inline bool matchesICOSignature(const char* contents) {
  return !memcmp(contents, "\x00\x00\x01\x00", 4);
}

inline bool matchesCURSignature(const char* contents) {
  return !memcmp(contents, "\x00\x00\x02\x00", 4);
}

inline bool matchesBMPSignature(const char* contents) {
  return !memcmp(contents, "BM", 2);
}

// This needs to be updated if we ever add a matches*Signature() which requires
// more characters.
static constexpr size_t kLongestSignatureLength = sizeof("RIFF????WEBPVP") - 1;

std::unique_ptr<ImageDecoder> ImageDecoder::create(
    PassRefPtr<SegmentReader> passData,
    bool dataComplete,
    AlphaOption alphaOption,
    const ColorBehavior& colorBehavior) {
  RefPtr<SegmentReader> data = passData;

  // We need at least kLongestSignatureLength bytes to run the signature
  // matcher.
  if (data->size() < kLongestSignatureLength)
    return nullptr;

  const size_t maxDecodedBytes =
      Platform::current() ? Platform::current()->maxDecodedImageBytes()
                          : noDecodedImageByteLimit;

  // Access the first kLongestSignatureLength chars to sniff the signature.
  // (note: FastSharedBufferReader only makes a copy if the bytes are segmented)
  char buffer[kLongestSignatureLength];
  const FastSharedBufferReader fastReader(data);
  const ImageDecoder::SniffResult sniffResult = determineImageType(
      fastReader.getConsecutiveData(0, kLongestSignatureLength, buffer),
      kLongestSignatureLength);

  std::unique_ptr<ImageDecoder> decoder;
  switch (sniffResult) {
    case SniffResult::JPEG:
      decoder.reset(
          new JPEGImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::PNG:
      decoder.reset(
          new PNGImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::GIF:
      decoder.reset(
          new GIFImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::WEBP:
      decoder.reset(
          new WEBPImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::ICO:
      decoder.reset(
          new ICOImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::BMP:
      decoder.reset(
          new BMPImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
      break;
    case SniffResult::Invalid:
      break;
  }

  if (decoder)
    decoder->setData(data.release(), dataComplete);

  return decoder;
}

bool ImageDecoder::hasSufficientDataToSniffImageType(const SharedBuffer& data) {
  return data.size() >= kLongestSignatureLength;
}

ImageDecoder::SniffResult ImageDecoder::determineImageType(const char* contents,
                                                           size_t length) {
  DCHECK_GE(length, kLongestSignatureLength);

  if (matchesJPEGSignature(contents))
    return SniffResult::JPEG;
  if (matchesPNGSignature(contents))
    return SniffResult::PNG;
  if (matchesGIFSignature(contents))
    return SniffResult::GIF;
  if (matchesWebPSignature(contents))
    return SniffResult::WEBP;
  if (matchesICOSignature(contents) || matchesCURSignature(contents))
    return SniffResult::ICO;
  if (matchesBMPSignature(contents))
    return SniffResult::BMP;
  return SniffResult::Invalid;
}

size_t ImageDecoder::frameCount() {
  const size_t oldSize = m_frameBufferCache.size();
  const size_t newSize = decodeFrameCount();
  if (oldSize != newSize) {
    m_frameBufferCache.resize(newSize);
    for (size_t i = oldSize; i < newSize; ++i) {
      m_frameBufferCache[i].setPremultiplyAlpha(m_premultiplyAlpha);
      initializeNewFrame(i);
    }
  }
  return newSize;
}

ImageFrame* ImageDecoder::frameBufferAtIndex(size_t index) {
  if (index >= frameCount())
    return 0;

  ImageFrame* frame = &m_frameBufferCache[index];
  if (frame->getStatus() != ImageFrame::FrameComplete) {
    PlatformInstrumentation::willDecodeImage(filenameExtension());
    decode(index);
    PlatformInstrumentation::didDecodeImage();
  }

  if (!m_hasHistogrammedColorSpace) {
    BitmapImageMetrics::countImageGammaAndGamut(m_embeddedColorSpace.get());
    m_hasHistogrammedColorSpace = true;
  }

  frame->notifyBitmapIfPixelsChanged();
  return frame;
}

bool ImageDecoder::frameHasAlphaAtIndex(size_t index) const {
  return !frameIsCompleteAtIndex(index) || m_frameBufferCache[index].hasAlpha();
}

bool ImageDecoder::frameIsCompleteAtIndex(size_t index) const {
  return (index < m_frameBufferCache.size()) &&
         (m_frameBufferCache[index].getStatus() == ImageFrame::FrameComplete);
}

size_t ImageDecoder::frameBytesAtIndex(size_t index) const {
  if (index >= m_frameBufferCache.size() ||
      m_frameBufferCache[index].getStatus() == ImageFrame::FrameEmpty)
    return 0;

  struct ImageSize {
    explicit ImageSize(IntSize size) {
      area = static_cast<uint64_t>(size.width()) * size.height();
    }

    uint64_t area;
  };

  return ImageSize(frameSizeAtIndex(index)).area *
         sizeof(ImageFrame::PixelData);
}

size_t ImageDecoder::clearCacheExceptFrame(size_t clearExceptFrame) {
  // Don't clear if there are no frames or only one frame.
  if (m_frameBufferCache.size() <= 1)
    return 0;

  // We expect that after this call, we'll be asked to decode frames after this
  // one. So we want to avoid clearing frames such that those requests would
  // force re-decoding from the beginning of the image. There are two cases in
  // which preserving |clearCacheExcept| frame is not enough to avoid that:
  //
  // 1. |clearExceptFrame| is not yet sufficiently decoded to decode subsequent
  //    frames. We need the previous frame to sufficiently decode this frame.
  // 2. The disposal method of |clearExceptFrame| is DisposeOverwritePrevious.
  //    In that case, we need to keep the required previous frame in the cache
  //    to prevent re-decoding that frame when |clearExceptFrame| is disposed.
  //
  // If either 1 or 2 is true, store the required previous frame in
  // |clearExceptFrame2| so it won't be cleared.
  size_t clearExceptFrame2 = kNotFound;
  if (clearExceptFrame < m_frameBufferCache.size()) {
    const ImageFrame& frame = m_frameBufferCache[clearExceptFrame];
    if (!frameStatusSufficientForSuccessors(clearExceptFrame) ||
        frame.getDisposalMethod() == ImageFrame::DisposeOverwritePrevious)
      clearExceptFrame2 = frame.requiredPreviousFrameIndex();
  }

  // Now |clearExceptFrame2| indicates the frame that |clearExceptFrame|
  // depends on, as described above. But if decoding is skipping forward past
  // intermediate frames, this frame may be insufficiently decoded. So we need
  // to keep traversing back through the required previous frames until we find
  // the nearest ancestor that is sufficiently decoded. Preserving that will
  // minimize the amount of future decoding needed.
  while (clearExceptFrame2 < m_frameBufferCache.size() &&
         !frameStatusSufficientForSuccessors(clearExceptFrame2)) {
    clearExceptFrame2 =
        m_frameBufferCache[clearExceptFrame2].requiredPreviousFrameIndex();
  }

  return clearCacheExceptTwoFrames(clearExceptFrame, clearExceptFrame2);
}

size_t ImageDecoder::clearCacheExceptTwoFrames(size_t clearExceptFrame1,
                                               size_t clearExceptFrame2) {
  size_t frameBytesCleared = 0;
  for (size_t i = 0; i < m_frameBufferCache.size(); ++i) {
    if (m_frameBufferCache[i].getStatus() != ImageFrame::FrameEmpty &&
        i != clearExceptFrame1 && i != clearExceptFrame2) {
      frameBytesCleared += frameBytesAtIndex(i);
      clearFrameBuffer(i);
    }
  }
  return frameBytesCleared;
}

void ImageDecoder::clearFrameBuffer(size_t frameIndex) {
  m_frameBufferCache[frameIndex].clearPixelData();
}

Vector<size_t> ImageDecoder::findFramesToDecode(size_t index) const {
  DCHECK(index < m_frameBufferCache.size());

  Vector<size_t> framesToDecode;
  do {
    framesToDecode.push_back(index);
    index = m_frameBufferCache[index].requiredPreviousFrameIndex();
  } while (index != kNotFound &&
           m_frameBufferCache[index].getStatus() != ImageFrame::FrameComplete);
  return framesToDecode;
}

bool ImageDecoder::postDecodeProcessing(size_t index) {
  DCHECK(index < m_frameBufferCache.size());

  if (m_frameBufferCache[index].getStatus() != ImageFrame::FrameComplete)
    return false;

  if (m_purgeAggressively)
    clearCacheExceptFrame(index);

  return true;
}

void ImageDecoder::correctAlphaWhenFrameBufferSawNoAlpha(size_t index) {
  DCHECK(index < m_frameBufferCache.size());
  ImageFrame& buffer = m_frameBufferCache[index];

  // When this frame spans the entire image rect we can set hasAlpha to false,
  // since there are logically no transparent pixels outside of the frame rect.
  if (buffer.originalFrameRect().contains(IntRect(IntPoint(), size()))) {
    buffer.setHasAlpha(false);
    buffer.setRequiredPreviousFrameIndex(kNotFound);
  } else if (buffer.requiredPreviousFrameIndex() != kNotFound) {
    // When the frame rect does not span the entire image rect, and it does
    // *not* have a required previous frame, the pixels outside of the frame
    // rect will be fully transparent, so we shoudn't set hasAlpha to false.
    //
    // It is a tricky case when the frame does have a required previous frame.
    // The frame does not have alpha only if everywhere outside its rect
    // doesn't have alpha.  To know whether this is true, we check the start
    // state of the frame -- if it doesn't have alpha, we're safe.
    //
    // We first check that the required previous frame does not have
    // DisposeOverWritePrevious as its disposal method - this should never
    // happen, since the required frame should in that case be the required
    // frame of this frame's required frame.
    //
    // If |prevBuffer| is DisposeNotSpecified or DisposeKeep, |buffer| has no
    // alpha if |prevBuffer| had no alpha. Since initFrameBuffer() already
    // copied the alpha state, there's nothing to do here.
    //
    // The only remaining case is a DisposeOverwriteBgcolor frame.  If
    // it had no alpha, and its rect is contained in the current frame's
    // rect, we know the current frame has no alpha.
    //
    // For DisposeNotSpecified, DisposeKeep and DisposeOverwriteBgcolor there
    // is one situation that is not taken into account - when |prevBuffer|
    // *does* have alpha, but only in the frame rect of |buffer|, we can still
    // say that this frame has no alpha. However, to determine this, we
    // potentially need to analyze all image pixels of |prevBuffer|, which is
    // too computationally expensive.
    const ImageFrame* prevBuffer =
        &m_frameBufferCache[buffer.requiredPreviousFrameIndex()];
    DCHECK(prevBuffer->getDisposalMethod() !=
           ImageFrame::DisposeOverwritePrevious);

    if ((prevBuffer->getDisposalMethod() ==
         ImageFrame::DisposeOverwriteBgcolor) &&
        !prevBuffer->hasAlpha() &&
        buffer.originalFrameRect().contains(prevBuffer->originalFrameRect()))
      buffer.setHasAlpha(false);
  }
}

bool ImageDecoder::initFrameBuffer(size_t frameIndex) {
  DCHECK(frameIndex < m_frameBufferCache.size());

  ImageFrame* const buffer = &m_frameBufferCache[frameIndex];

  // If the frame is already initialized, return true.
  if (buffer->getStatus() != ImageFrame::FrameEmpty)
    return true;

  size_t requiredPreviousFrameIndex = buffer->requiredPreviousFrameIndex();
  if (requiredPreviousFrameIndex == kNotFound) {
    // This frame doesn't rely on any previous data.
    if (!buffer->setSizeAndColorSpace(size().width(), size().height(),
                                      colorSpaceForSkImages())) {
      return setFailed();
    }
  } else {
    ImageFrame* const prevBuffer =
        &m_frameBufferCache[requiredPreviousFrameIndex];
    DCHECK(prevBuffer->getStatus() == ImageFrame::FrameComplete);

    // We try to reuse |prevBuffer| as starting state to avoid copying.
    // If canReusePreviousFrameBuffer returns false, we must copy the data since
    // |prevBuffer| is necessary to decode this or later frames. In that case,
    // copy the data instead.
    if ((!canReusePreviousFrameBuffer(frameIndex) ||
         !buffer->takeBitmapDataIfWritable(prevBuffer)) &&
        !buffer->copyBitmapData(*prevBuffer))
      return setFailed();

    if (prevBuffer->getDisposalMethod() ==
        ImageFrame::DisposeOverwriteBgcolor) {
      // We want to clear the previous frame to transparent, without
      // affecting pixels in the image outside of the frame.
      const IntRect& prevRect = prevBuffer->originalFrameRect();
      DCHECK(!prevRect.contains(IntRect(IntPoint(), size())));
      buffer->zeroFillFrameRect(prevRect);
    }
  }

  // Update our status to be partially complete.
  buffer->setStatus(ImageFrame::FramePartial);

  onInitFrameBuffer(frameIndex);
  return true;
}

void ImageDecoder::updateAggressivePurging(size_t index) {
  if (m_purgeAggressively)
    return;

  // We don't want to cache so much that we cause a memory issue.
  //
  // If we used a LRU cache we would fill it and then on next animation loop
  // we would need to decode all the frames again -- the LRU would give no
  // benefit and would consume more memory.
  // So instead, simply purge unused frames if caching all of the frames of
  // the image would use more memory than the image decoder is allowed
  // (m_maxDecodedBytes) or would overflow 32 bits..
  //
  // As we decode we will learn the total number of frames, and thus total
  // possible image memory used.

  const uint64_t frameArea = decodedSize().area();
  const uint64_t frameMemoryUsage = frameArea * 4;  // 4 bytes per pixel
  if (frameMemoryUsage / 4 != frameArea) {          // overflow occurred
    m_purgeAggressively = true;
    return;
  }

  const uint64_t totalMemoryUsage = frameMemoryUsage * index;
  if (totalMemoryUsage / frameMemoryUsage != index) {  // overflow occurred
    m_purgeAggressively = true;
    return;
  }

  if (totalMemoryUsage > m_maxDecodedBytes) {
    m_purgeAggressively = true;
  }
}

size_t ImageDecoder::findRequiredPreviousFrame(size_t frameIndex,
                                               bool frameRectIsOpaque) {
  ASSERT(frameIndex <= m_frameBufferCache.size());
  if (!frameIndex) {
    // The first frame doesn't rely on any previous data.
    return kNotFound;
  }

  const ImageFrame* currBuffer = &m_frameBufferCache[frameIndex];
  if ((frameRectIsOpaque ||
       currBuffer->getAlphaBlendSource() == ImageFrame::BlendAtopBgcolor) &&
      currBuffer->originalFrameRect().contains(IntRect(IntPoint(), size())))
    return kNotFound;

  // The starting state for this frame depends on the previous frame's
  // disposal method.
  size_t prevFrame = frameIndex - 1;
  const ImageFrame* prevBuffer = &m_frameBufferCache[prevFrame];

  switch (prevBuffer->getDisposalMethod()) {
    case ImageFrame::DisposeNotSpecified:
    case ImageFrame::DisposeKeep:
      // prevFrame will be used as the starting state for this frame.
      // FIXME: Be even smarter by checking the frame sizes and/or
      // alpha-containing regions.
      return prevFrame;
    case ImageFrame::DisposeOverwritePrevious:
      // Frames that use the DisposeOverwritePrevious method are effectively
      // no-ops in terms of changing the starting state of a frame compared to
      // the starting state of the previous frame, so skip over them and
      // return the required previous frame of it.
      return prevBuffer->requiredPreviousFrameIndex();
    case ImageFrame::DisposeOverwriteBgcolor:
      // If the previous frame fills the whole image, then the current frame
      // can be decoded alone. Likewise, if the previous frame could be
      // decoded without reference to any prior frame, the starting state for
      // this frame is a blank frame, so it can again be decoded alone.
      // Otherwise, the previous frame contributes to this frame.
      return (prevBuffer->originalFrameRect().contains(
                  IntRect(IntPoint(), size())) ||
              (prevBuffer->requiredPreviousFrameIndex() == kNotFound))
                 ? kNotFound
                 : prevFrame;
    default:
      ASSERT_NOT_REACHED();
      return kNotFound;
  }
}

ImagePlanes::ImagePlanes() {
  for (int i = 0; i < 3; ++i) {
    m_planes[i] = 0;
    m_rowBytes[i] = 0;
  }
}

ImagePlanes::ImagePlanes(void* planes[3], const size_t rowBytes[3]) {
  for (int i = 0; i < 3; ++i) {
    m_planes[i] = planes[i];
    m_rowBytes[i] = rowBytes[i];
  }
}

void* ImagePlanes::plane(int i) {
  ASSERT((i >= 0) && i < 3);
  return m_planes[i];
}

size_t ImagePlanes::rowBytes(int i) const {
  ASSERT((i >= 0) && i < 3);
  return m_rowBytes[i];
}

void ImageDecoder::setEmbeddedColorProfile(const char* iccData,
                                           unsigned iccLength) {
  sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(iccData, iccLength);
  if (!colorSpace)
    DLOG(ERROR) << "Failed to parse image ICC profile";
  setEmbeddedColorSpace(std::move(colorSpace));
}

void ImageDecoder::setEmbeddedColorSpace(sk_sp<SkColorSpace> colorSpace) {
  DCHECK(!ignoresColorSpace());
  DCHECK(!m_hasHistogrammedColorSpace);

  m_embeddedColorSpace = colorSpace;
  m_sourceToTargetColorTransformNeedsUpdate = true;
}

SkColorSpaceXform* ImageDecoder::colorTransform() {
  if (!m_sourceToTargetColorTransformNeedsUpdate)
    return m_sourceToTargetColorTransform.get();
  m_sourceToTargetColorTransformNeedsUpdate = false;
  m_sourceToTargetColorTransform = nullptr;

  if (!m_colorBehavior.isTransformToTargetColorSpace())
    return nullptr;

  sk_sp<SkColorSpace> srcColorSpace = m_embeddedColorSpace;
  if (!srcColorSpace) {
    if (RuntimeEnabledFeatures::colorCorrectRenderingEnabled())
      srcColorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
    else
      return nullptr;
  }

  if (SkColorSpace::Equals(m_embeddedColorSpace.get(),
                           m_colorBehavior.targetColorSpace().get())) {
    return nullptr;
  }

  m_sourceToTargetColorTransform = SkColorSpaceXform::New(
      m_embeddedColorSpace.get(), m_colorBehavior.targetColorSpace().get());
  return m_sourceToTargetColorTransform.get();
}

sk_sp<SkColorSpace> ImageDecoder::colorSpaceForSkImages() const {
  if (!m_colorBehavior.isTag())
    return nullptr;

  if (m_embeddedColorSpace)
    return m_embeddedColorSpace;
  return SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
}

}  // namespace blink