1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
/*
* Copyright (C) Research In Motion Limited 2009-2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "platform/image-decoders/ImageDecoder.h"
#include "platform/PlatformInstrumentation.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/graphics/BitmapImageMetrics.h"
#include "platform/image-decoders/FastSharedBufferReader.h"
#include "platform/image-decoders/bmp/BMPImageDecoder.h"
#include "platform/image-decoders/gif/GIFImageDecoder.h"
#include "platform/image-decoders/ico/ICOImageDecoder.h"
#include "platform/image-decoders/jpeg/JPEGImageDecoder.h"
#include "platform/image-decoders/png/PNGImageDecoder.h"
#include "platform/image-decoders/webp/WEBPImageDecoder.h"
#include "wtf/PtrUtil.h"
#include <memory>
namespace blink {
inline bool matchesJPEGSignature(const char* contents) {
return !memcmp(contents, "\xFF\xD8\xFF", 3);
}
inline bool matchesPNGSignature(const char* contents) {
return !memcmp(contents, "\x89PNG\r\n\x1A\n", 8);
}
inline bool matchesGIFSignature(const char* contents) {
return !memcmp(contents, "GIF87a", 6) || !memcmp(contents, "GIF89a", 6);
}
inline bool matchesWebPSignature(const char* contents) {
return !memcmp(contents, "RIFF", 4) && !memcmp(contents + 8, "WEBPVP", 6);
}
inline bool matchesICOSignature(const char* contents) {
return !memcmp(contents, "\x00\x00\x01\x00", 4);
}
inline bool matchesCURSignature(const char* contents) {
return !memcmp(contents, "\x00\x00\x02\x00", 4);
}
inline bool matchesBMPSignature(const char* contents) {
return !memcmp(contents, "BM", 2);
}
// This needs to be updated if we ever add a matches*Signature() which requires
// more characters.
static constexpr size_t kLongestSignatureLength = sizeof("RIFF????WEBPVP") - 1;
std::unique_ptr<ImageDecoder> ImageDecoder::create(
PassRefPtr<SegmentReader> passData,
bool dataComplete,
AlphaOption alphaOption,
const ColorBehavior& colorBehavior) {
RefPtr<SegmentReader> data = passData;
// We need at least kLongestSignatureLength bytes to run the signature
// matcher.
if (data->size() < kLongestSignatureLength)
return nullptr;
const size_t maxDecodedBytes =
Platform::current() ? Platform::current()->maxDecodedImageBytes()
: noDecodedImageByteLimit;
// Access the first kLongestSignatureLength chars to sniff the signature.
// (note: FastSharedBufferReader only makes a copy if the bytes are segmented)
char buffer[kLongestSignatureLength];
const FastSharedBufferReader fastReader(data);
const ImageDecoder::SniffResult sniffResult = determineImageType(
fastReader.getConsecutiveData(0, kLongestSignatureLength, buffer),
kLongestSignatureLength);
std::unique_ptr<ImageDecoder> decoder;
switch (sniffResult) {
case SniffResult::JPEG:
decoder.reset(
new JPEGImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::PNG:
decoder.reset(
new PNGImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::GIF:
decoder.reset(
new GIFImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::WEBP:
decoder.reset(
new WEBPImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::ICO:
decoder.reset(
new ICOImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::BMP:
decoder.reset(
new BMPImageDecoder(alphaOption, colorBehavior, maxDecodedBytes));
break;
case SniffResult::Invalid:
break;
}
if (decoder)
decoder->setData(data.release(), dataComplete);
return decoder;
}
bool ImageDecoder::hasSufficientDataToSniffImageType(const SharedBuffer& data) {
return data.size() >= kLongestSignatureLength;
}
ImageDecoder::SniffResult ImageDecoder::determineImageType(const char* contents,
size_t length) {
DCHECK_GE(length, kLongestSignatureLength);
if (matchesJPEGSignature(contents))
return SniffResult::JPEG;
if (matchesPNGSignature(contents))
return SniffResult::PNG;
if (matchesGIFSignature(contents))
return SniffResult::GIF;
if (matchesWebPSignature(contents))
return SniffResult::WEBP;
if (matchesICOSignature(contents) || matchesCURSignature(contents))
return SniffResult::ICO;
if (matchesBMPSignature(contents))
return SniffResult::BMP;
return SniffResult::Invalid;
}
size_t ImageDecoder::frameCount() {
const size_t oldSize = m_frameBufferCache.size();
const size_t newSize = decodeFrameCount();
if (oldSize != newSize) {
m_frameBufferCache.resize(newSize);
for (size_t i = oldSize; i < newSize; ++i) {
m_frameBufferCache[i].setPremultiplyAlpha(m_premultiplyAlpha);
initializeNewFrame(i);
}
}
return newSize;
}
ImageFrame* ImageDecoder::frameBufferAtIndex(size_t index) {
if (index >= frameCount())
return 0;
ImageFrame* frame = &m_frameBufferCache[index];
if (frame->getStatus() != ImageFrame::FrameComplete) {
PlatformInstrumentation::willDecodeImage(filenameExtension());
decode(index);
PlatformInstrumentation::didDecodeImage();
}
if (!m_hasHistogrammedColorSpace) {
BitmapImageMetrics::countImageGammaAndGamut(m_embeddedColorSpace.get());
m_hasHistogrammedColorSpace = true;
}
frame->notifyBitmapIfPixelsChanged();
return frame;
}
bool ImageDecoder::frameHasAlphaAtIndex(size_t index) const {
return !frameIsCompleteAtIndex(index) || m_frameBufferCache[index].hasAlpha();
}
bool ImageDecoder::frameIsCompleteAtIndex(size_t index) const {
return (index < m_frameBufferCache.size()) &&
(m_frameBufferCache[index].getStatus() == ImageFrame::FrameComplete);
}
size_t ImageDecoder::frameBytesAtIndex(size_t index) const {
if (index >= m_frameBufferCache.size() ||
m_frameBufferCache[index].getStatus() == ImageFrame::FrameEmpty)
return 0;
struct ImageSize {
explicit ImageSize(IntSize size) {
area = static_cast<uint64_t>(size.width()) * size.height();
}
uint64_t area;
};
return ImageSize(frameSizeAtIndex(index)).area *
sizeof(ImageFrame::PixelData);
}
size_t ImageDecoder::clearCacheExceptFrame(size_t clearExceptFrame) {
// Don't clear if there are no frames or only one frame.
if (m_frameBufferCache.size() <= 1)
return 0;
// We expect that after this call, we'll be asked to decode frames after this
// one. So we want to avoid clearing frames such that those requests would
// force re-decoding from the beginning of the image. There are two cases in
// which preserving |clearCacheExcept| frame is not enough to avoid that:
//
// 1. |clearExceptFrame| is not yet sufficiently decoded to decode subsequent
// frames. We need the previous frame to sufficiently decode this frame.
// 2. The disposal method of |clearExceptFrame| is DisposeOverwritePrevious.
// In that case, we need to keep the required previous frame in the cache
// to prevent re-decoding that frame when |clearExceptFrame| is disposed.
//
// If either 1 or 2 is true, store the required previous frame in
// |clearExceptFrame2| so it won't be cleared.
size_t clearExceptFrame2 = kNotFound;
if (clearExceptFrame < m_frameBufferCache.size()) {
const ImageFrame& frame = m_frameBufferCache[clearExceptFrame];
if (!frameStatusSufficientForSuccessors(clearExceptFrame) ||
frame.getDisposalMethod() == ImageFrame::DisposeOverwritePrevious)
clearExceptFrame2 = frame.requiredPreviousFrameIndex();
}
// Now |clearExceptFrame2| indicates the frame that |clearExceptFrame|
// depends on, as described above. But if decoding is skipping forward past
// intermediate frames, this frame may be insufficiently decoded. So we need
// to keep traversing back through the required previous frames until we find
// the nearest ancestor that is sufficiently decoded. Preserving that will
// minimize the amount of future decoding needed.
while (clearExceptFrame2 < m_frameBufferCache.size() &&
!frameStatusSufficientForSuccessors(clearExceptFrame2)) {
clearExceptFrame2 =
m_frameBufferCache[clearExceptFrame2].requiredPreviousFrameIndex();
}
return clearCacheExceptTwoFrames(clearExceptFrame, clearExceptFrame2);
}
size_t ImageDecoder::clearCacheExceptTwoFrames(size_t clearExceptFrame1,
size_t clearExceptFrame2) {
size_t frameBytesCleared = 0;
for (size_t i = 0; i < m_frameBufferCache.size(); ++i) {
if (m_frameBufferCache[i].getStatus() != ImageFrame::FrameEmpty &&
i != clearExceptFrame1 && i != clearExceptFrame2) {
frameBytesCleared += frameBytesAtIndex(i);
clearFrameBuffer(i);
}
}
return frameBytesCleared;
}
void ImageDecoder::clearFrameBuffer(size_t frameIndex) {
m_frameBufferCache[frameIndex].clearPixelData();
}
Vector<size_t> ImageDecoder::findFramesToDecode(size_t index) const {
DCHECK(index < m_frameBufferCache.size());
Vector<size_t> framesToDecode;
do {
framesToDecode.push_back(index);
index = m_frameBufferCache[index].requiredPreviousFrameIndex();
} while (index != kNotFound &&
m_frameBufferCache[index].getStatus() != ImageFrame::FrameComplete);
return framesToDecode;
}
bool ImageDecoder::postDecodeProcessing(size_t index) {
DCHECK(index < m_frameBufferCache.size());
if (m_frameBufferCache[index].getStatus() != ImageFrame::FrameComplete)
return false;
if (m_purgeAggressively)
clearCacheExceptFrame(index);
return true;
}
void ImageDecoder::correctAlphaWhenFrameBufferSawNoAlpha(size_t index) {
DCHECK(index < m_frameBufferCache.size());
ImageFrame& buffer = m_frameBufferCache[index];
// When this frame spans the entire image rect we can set hasAlpha to false,
// since there are logically no transparent pixels outside of the frame rect.
if (buffer.originalFrameRect().contains(IntRect(IntPoint(), size()))) {
buffer.setHasAlpha(false);
buffer.setRequiredPreviousFrameIndex(kNotFound);
} else if (buffer.requiredPreviousFrameIndex() != kNotFound) {
// When the frame rect does not span the entire image rect, and it does
// *not* have a required previous frame, the pixels outside of the frame
// rect will be fully transparent, so we shoudn't set hasAlpha to false.
//
// It is a tricky case when the frame does have a required previous frame.
// The frame does not have alpha only if everywhere outside its rect
// doesn't have alpha. To know whether this is true, we check the start
// state of the frame -- if it doesn't have alpha, we're safe.
//
// We first check that the required previous frame does not have
// DisposeOverWritePrevious as its disposal method - this should never
// happen, since the required frame should in that case be the required
// frame of this frame's required frame.
//
// If |prevBuffer| is DisposeNotSpecified or DisposeKeep, |buffer| has no
// alpha if |prevBuffer| had no alpha. Since initFrameBuffer() already
// copied the alpha state, there's nothing to do here.
//
// The only remaining case is a DisposeOverwriteBgcolor frame. If
// it had no alpha, and its rect is contained in the current frame's
// rect, we know the current frame has no alpha.
//
// For DisposeNotSpecified, DisposeKeep and DisposeOverwriteBgcolor there
// is one situation that is not taken into account - when |prevBuffer|
// *does* have alpha, but only in the frame rect of |buffer|, we can still
// say that this frame has no alpha. However, to determine this, we
// potentially need to analyze all image pixels of |prevBuffer|, which is
// too computationally expensive.
const ImageFrame* prevBuffer =
&m_frameBufferCache[buffer.requiredPreviousFrameIndex()];
DCHECK(prevBuffer->getDisposalMethod() !=
ImageFrame::DisposeOverwritePrevious);
if ((prevBuffer->getDisposalMethod() ==
ImageFrame::DisposeOverwriteBgcolor) &&
!prevBuffer->hasAlpha() &&
buffer.originalFrameRect().contains(prevBuffer->originalFrameRect()))
buffer.setHasAlpha(false);
}
}
bool ImageDecoder::initFrameBuffer(size_t frameIndex) {
DCHECK(frameIndex < m_frameBufferCache.size());
ImageFrame* const buffer = &m_frameBufferCache[frameIndex];
// If the frame is already initialized, return true.
if (buffer->getStatus() != ImageFrame::FrameEmpty)
return true;
size_t requiredPreviousFrameIndex = buffer->requiredPreviousFrameIndex();
if (requiredPreviousFrameIndex == kNotFound) {
// This frame doesn't rely on any previous data.
if (!buffer->setSizeAndColorSpace(size().width(), size().height(),
colorSpaceForSkImages())) {
return setFailed();
}
} else {
ImageFrame* const prevBuffer =
&m_frameBufferCache[requiredPreviousFrameIndex];
DCHECK(prevBuffer->getStatus() == ImageFrame::FrameComplete);
// We try to reuse |prevBuffer| as starting state to avoid copying.
// If canReusePreviousFrameBuffer returns false, we must copy the data since
// |prevBuffer| is necessary to decode this or later frames. In that case,
// copy the data instead.
if ((!canReusePreviousFrameBuffer(frameIndex) ||
!buffer->takeBitmapDataIfWritable(prevBuffer)) &&
!buffer->copyBitmapData(*prevBuffer))
return setFailed();
if (prevBuffer->getDisposalMethod() ==
ImageFrame::DisposeOverwriteBgcolor) {
// We want to clear the previous frame to transparent, without
// affecting pixels in the image outside of the frame.
const IntRect& prevRect = prevBuffer->originalFrameRect();
DCHECK(!prevRect.contains(IntRect(IntPoint(), size())));
buffer->zeroFillFrameRect(prevRect);
}
}
// Update our status to be partially complete.
buffer->setStatus(ImageFrame::FramePartial);
onInitFrameBuffer(frameIndex);
return true;
}
void ImageDecoder::updateAggressivePurging(size_t index) {
if (m_purgeAggressively)
return;
// We don't want to cache so much that we cause a memory issue.
//
// If we used a LRU cache we would fill it and then on next animation loop
// we would need to decode all the frames again -- the LRU would give no
// benefit and would consume more memory.
// So instead, simply purge unused frames if caching all of the frames of
// the image would use more memory than the image decoder is allowed
// (m_maxDecodedBytes) or would overflow 32 bits..
//
// As we decode we will learn the total number of frames, and thus total
// possible image memory used.
const uint64_t frameArea = decodedSize().area();
const uint64_t frameMemoryUsage = frameArea * 4; // 4 bytes per pixel
if (frameMemoryUsage / 4 != frameArea) { // overflow occurred
m_purgeAggressively = true;
return;
}
const uint64_t totalMemoryUsage = frameMemoryUsage * index;
if (totalMemoryUsage / frameMemoryUsage != index) { // overflow occurred
m_purgeAggressively = true;
return;
}
if (totalMemoryUsage > m_maxDecodedBytes) {
m_purgeAggressively = true;
}
}
size_t ImageDecoder::findRequiredPreviousFrame(size_t frameIndex,
bool frameRectIsOpaque) {
ASSERT(frameIndex <= m_frameBufferCache.size());
if (!frameIndex) {
// The first frame doesn't rely on any previous data.
return kNotFound;
}
const ImageFrame* currBuffer = &m_frameBufferCache[frameIndex];
if ((frameRectIsOpaque ||
currBuffer->getAlphaBlendSource() == ImageFrame::BlendAtopBgcolor) &&
currBuffer->originalFrameRect().contains(IntRect(IntPoint(), size())))
return kNotFound;
// The starting state for this frame depends on the previous frame's
// disposal method.
size_t prevFrame = frameIndex - 1;
const ImageFrame* prevBuffer = &m_frameBufferCache[prevFrame];
switch (prevBuffer->getDisposalMethod()) {
case ImageFrame::DisposeNotSpecified:
case ImageFrame::DisposeKeep:
// prevFrame will be used as the starting state for this frame.
// FIXME: Be even smarter by checking the frame sizes and/or
// alpha-containing regions.
return prevFrame;
case ImageFrame::DisposeOverwritePrevious:
// Frames that use the DisposeOverwritePrevious method are effectively
// no-ops in terms of changing the starting state of a frame compared to
// the starting state of the previous frame, so skip over them and
// return the required previous frame of it.
return prevBuffer->requiredPreviousFrameIndex();
case ImageFrame::DisposeOverwriteBgcolor:
// If the previous frame fills the whole image, then the current frame
// can be decoded alone. Likewise, if the previous frame could be
// decoded without reference to any prior frame, the starting state for
// this frame is a blank frame, so it can again be decoded alone.
// Otherwise, the previous frame contributes to this frame.
return (prevBuffer->originalFrameRect().contains(
IntRect(IntPoint(), size())) ||
(prevBuffer->requiredPreviousFrameIndex() == kNotFound))
? kNotFound
: prevFrame;
default:
ASSERT_NOT_REACHED();
return kNotFound;
}
}
ImagePlanes::ImagePlanes() {
for (int i = 0; i < 3; ++i) {
m_planes[i] = 0;
m_rowBytes[i] = 0;
}
}
ImagePlanes::ImagePlanes(void* planes[3], const size_t rowBytes[3]) {
for (int i = 0; i < 3; ++i) {
m_planes[i] = planes[i];
m_rowBytes[i] = rowBytes[i];
}
}
void* ImagePlanes::plane(int i) {
ASSERT((i >= 0) && i < 3);
return m_planes[i];
}
size_t ImagePlanes::rowBytes(int i) const {
ASSERT((i >= 0) && i < 3);
return m_rowBytes[i];
}
void ImageDecoder::setEmbeddedColorProfile(const char* iccData,
unsigned iccLength) {
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(iccData, iccLength);
if (!colorSpace)
DLOG(ERROR) << "Failed to parse image ICC profile";
setEmbeddedColorSpace(std::move(colorSpace));
}
void ImageDecoder::setEmbeddedColorSpace(sk_sp<SkColorSpace> colorSpace) {
DCHECK(!ignoresColorSpace());
DCHECK(!m_hasHistogrammedColorSpace);
m_embeddedColorSpace = colorSpace;
m_sourceToTargetColorTransformNeedsUpdate = true;
}
SkColorSpaceXform* ImageDecoder::colorTransform() {
if (!m_sourceToTargetColorTransformNeedsUpdate)
return m_sourceToTargetColorTransform.get();
m_sourceToTargetColorTransformNeedsUpdate = false;
m_sourceToTargetColorTransform = nullptr;
if (!m_colorBehavior.isTransformToTargetColorSpace())
return nullptr;
sk_sp<SkColorSpace> srcColorSpace = m_embeddedColorSpace;
if (!srcColorSpace) {
if (RuntimeEnabledFeatures::colorCorrectRenderingEnabled())
srcColorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
else
return nullptr;
}
if (SkColorSpace::Equals(m_embeddedColorSpace.get(),
m_colorBehavior.targetColorSpace().get())) {
return nullptr;
}
m_sourceToTargetColorTransform = SkColorSpaceXform::New(
m_embeddedColorSpace.get(), m_colorBehavior.targetColorSpace().get());
return m_sourceToTargetColorTransform.get();
}
sk_sp<SkColorSpace> ImageDecoder::colorSpaceForSkImages() const {
if (!m_colorBehavior.isTag())
return nullptr;
if (m_embeddedColorSpace)
return m_embeddedColorSpace;
return SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
}
} // namespace blink
|