File: WEBPImageDecoder.cpp

package info (click to toggle)
chromium-browser 57.0.2987.98-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 2,637,852 kB
  • ctags: 2,544,394
  • sloc: cpp: 12,815,961; ansic: 3,676,222; python: 1,147,112; asm: 526,608; java: 523,212; xml: 286,794; perl: 92,654; sh: 86,408; objc: 73,271; makefile: 27,698; cs: 18,487; yacc: 13,031; tcl: 12,957; pascal: 4,875; ml: 4,716; lex: 3,904; sql: 3,862; ruby: 1,982; lisp: 1,508; php: 1,368; exp: 404; awk: 325; csh: 117; jsp: 39; sed: 37
file content (518 lines) | stat: -rw-r--r-- 19,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "platform/image-decoders/webp/WEBPImageDecoder.h"

#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
#error Blink assumes a little-endian target.
#endif

#if SK_B32_SHIFT  // Output little-endian RGBA pixels (Android).
inline WEBP_CSP_MODE outputMode(bool hasAlpha) {
  return hasAlpha ? MODE_rgbA : MODE_RGBA;
}
#else  // Output little-endian BGRA pixels.
inline WEBP_CSP_MODE outputMode(bool hasAlpha) {
  return hasAlpha ? MODE_bgrA : MODE_BGRA;
}
#endif

namespace {

// Returns two point ranges (<left, width> pairs) at row |canvasY| which belong
// to |src| but not |dst|. A range is empty if its width is 0.
inline void findBlendRangeAtRow(const blink::IntRect& src,
                                const blink::IntRect& dst,
                                int canvasY,
                                int& left1,
                                int& width1,
                                int& left2,
                                int& width2) {
  SECURITY_DCHECK(canvasY >= src.y() && canvasY < src.maxY());
  left1 = -1;
  width1 = 0;
  left2 = -1;
  width2 = 0;

  if (canvasY < dst.y() || canvasY >= dst.maxY() || src.x() >= dst.maxX() ||
      src.maxX() <= dst.x()) {
    left1 = src.x();
    width1 = src.width();
    return;
  }

  if (src.x() < dst.x()) {
    left1 = src.x();
    width1 = dst.x() - src.x();
  }

  if (src.maxX() > dst.maxX()) {
    left2 = dst.maxX();
    width2 = src.maxX() - dst.maxX();
  }
}

// alphaBlendPremultiplied and alphaBlendNonPremultiplied are separate methods,
// even though they only differ by one line. This is done so that the compiler
// can inline blendSrcOverDstPremultiplied() and blensSrcOverDstRaw() calls.
// For GIF images, this optimization reduces decoding time by 15% for 3MB
// images.
void alphaBlendPremultiplied(blink::ImageFrame& src,
                             blink::ImageFrame& dst,
                             int canvasY,
                             int left,
                             int width) {
  for (int x = 0; x < width; ++x) {
    int canvasX = left + x;
    blink::ImageFrame::PixelData* pixel = src.getAddr(canvasX, canvasY);
    if (SkGetPackedA32(*pixel) != 0xff) {
      blink::ImageFrame::PixelData prevPixel = *dst.getAddr(canvasX, canvasY);
      blink::ImageFrame::blendSrcOverDstPremultiplied(pixel, prevPixel);
    }
  }
}

void alphaBlendNonPremultiplied(blink::ImageFrame& src,
                                blink::ImageFrame& dst,
                                int canvasY,
                                int left,
                                int width) {
  for (int x = 0; x < width; ++x) {
    int canvasX = left + x;
    blink::ImageFrame::PixelData* pixel = src.getAddr(canvasX, canvasY);
    if (SkGetPackedA32(*pixel) != 0xff) {
      blink::ImageFrame::PixelData prevPixel = *dst.getAddr(canvasX, canvasY);
      blink::ImageFrame::blendSrcOverDstRaw(pixel, prevPixel);
    }
  }
}

}  // namespace

namespace blink {

WEBPImageDecoder::WEBPImageDecoder(AlphaOption alphaOption,
                                   const ColorBehavior& colorBehavior,
                                   size_t maxDecodedBytes)
    : ImageDecoder(alphaOption, colorBehavior, maxDecodedBytes),
      m_decoder(0),
      m_formatFlags(0),
      m_frameBackgroundHasAlpha(false),
      m_demux(0),
      m_demuxState(WEBP_DEMUX_PARSING_HEADER),
      m_haveAlreadyParsedThisData(false),
      m_repetitionCount(cAnimationLoopOnce),
      m_decodedHeight(0) {
  m_blendFunction = (alphaOption == AlphaPremultiplied)
                        ? alphaBlendPremultiplied
                        : alphaBlendNonPremultiplied;
}

WEBPImageDecoder::~WEBPImageDecoder() {
  clear();
}

void WEBPImageDecoder::clear() {
  WebPDemuxDelete(m_demux);
  m_demux = 0;
  m_consolidatedData.reset();
  clearDecoder();
}

void WEBPImageDecoder::clearDecoder() {
  WebPIDelete(m_decoder);
  m_decoder = 0;
  m_decodedHeight = 0;
  m_frameBackgroundHasAlpha = false;
}

void WEBPImageDecoder::onSetData(SegmentReader*) {
  m_haveAlreadyParsedThisData = false;
}

int WEBPImageDecoder::repetitionCount() const {
  return failed() ? cAnimationLoopOnce : m_repetitionCount;
}

bool WEBPImageDecoder::frameIsCompleteAtIndex(size_t index) const {
  if (!m_demux || m_demuxState <= WEBP_DEMUX_PARSING_HEADER)
    return false;
  if (!(m_formatFlags & ANIMATION_FLAG))
    return ImageDecoder::frameIsCompleteAtIndex(index);
  bool frameIsLoadedAtIndex = index < m_frameBufferCache.size();
  return frameIsLoadedAtIndex;
}

float WEBPImageDecoder::frameDurationAtIndex(size_t index) const {
  return index < m_frameBufferCache.size()
             ? m_frameBufferCache[index].duration()
             : 0;
}

bool WEBPImageDecoder::updateDemuxer() {
  if (failed())
    return false;

  if (m_haveAlreadyParsedThisData)
    return true;

  m_haveAlreadyParsedThisData = true;

  const unsigned webpHeaderSize = 30;
  if (m_data->size() < webpHeaderSize)
    return false;  // Await VP8X header so WebPDemuxPartial succeeds.

  WebPDemuxDelete(m_demux);
  m_consolidatedData = m_data->getAsSkData();
  WebPData inputData = {
      reinterpret_cast<const uint8_t*>(m_consolidatedData->data()),
      m_consolidatedData->size()};
  m_demux = WebPDemuxPartial(&inputData, &m_demuxState);
  if (!m_demux || (isAllDataReceived() && m_demuxState != WEBP_DEMUX_DONE)) {
    if (!m_demux)
      m_consolidatedData.reset();
    return setFailed();
  }

  ASSERT(m_demuxState > WEBP_DEMUX_PARSING_HEADER);
  if (!WebPDemuxGetI(m_demux, WEBP_FF_FRAME_COUNT))
    return false;  // Wait until the encoded image frame data arrives.

  if (!isDecodedSizeAvailable()) {
    int width = WebPDemuxGetI(m_demux, WEBP_FF_CANVAS_WIDTH);
    int height = WebPDemuxGetI(m_demux, WEBP_FF_CANVAS_HEIGHT);
    if (!setSize(width, height))
      return setFailed();

    m_formatFlags = WebPDemuxGetI(m_demux, WEBP_FF_FORMAT_FLAGS);
    if (!(m_formatFlags & ANIMATION_FLAG)) {
      m_repetitionCount = cAnimationNone;
    } else {
      // Since we have parsed at least one frame, even if partially,
      // the global animation (ANIM) properties have been read since
      // an ANIM chunk must precede the ANMF frame chunks.
      m_repetitionCount = WebPDemuxGetI(m_demux, WEBP_FF_LOOP_COUNT);
      // Repetition count is always <= 16 bits.
      ASSERT(m_repetitionCount == (m_repetitionCount & 0xffff));
      if (!m_repetitionCount)
        m_repetitionCount = cAnimationLoopInfinite;
      // FIXME: Implement ICC profile support for animated images.
      m_formatFlags &= ~ICCP_FLAG;
    }

    if ((m_formatFlags & ICCP_FLAG) && !ignoresColorSpace())
      readColorProfile();
  }

  ASSERT(isDecodedSizeAvailable());

  size_t frameCount = WebPDemuxGetI(m_demux, WEBP_FF_FRAME_COUNT);
  updateAggressivePurging(frameCount);

  return true;
}

void WEBPImageDecoder::onInitFrameBuffer(size_t frameIndex) {
  // ImageDecoder::initFrameBuffer does a DCHECK if |frameIndex| exists.
  ImageFrame& buffer = m_frameBufferCache[frameIndex];

  const size_t requiredPreviousFrameIndex = buffer.requiredPreviousFrameIndex();
  if (requiredPreviousFrameIndex == kNotFound) {
    m_frameBackgroundHasAlpha =
        !buffer.originalFrameRect().contains(IntRect(IntPoint(), size()));
  } else {
    const ImageFrame& prevBuffer =
        m_frameBufferCache[requiredPreviousFrameIndex];
    m_frameBackgroundHasAlpha =
        prevBuffer.hasAlpha() ||
        (prevBuffer.getDisposalMethod() == ImageFrame::DisposeOverwriteBgcolor);
  }

  // The buffer is transparent outside the decoded area while the image is
  // loading. The correct alpha value for the frame will be set when it is fully
  // decoded.
  buffer.setHasAlpha(true);
}

bool WEBPImageDecoder::canReusePreviousFrameBuffer(size_t frameIndex) const {
  DCHECK(frameIndex < m_frameBufferCache.size());
  return m_frameBufferCache[frameIndex].getAlphaBlendSource() !=
         ImageFrame::BlendAtopPreviousFrame;
}

void WEBPImageDecoder::clearFrameBuffer(size_t frameIndex) {
  if (m_demux && m_demuxState >= WEBP_DEMUX_PARSED_HEADER &&
      m_frameBufferCache[frameIndex].getStatus() == ImageFrame::FramePartial) {
    // Clear the decoder state so that this partial frame can be decoded again
    // when requested.
    clearDecoder();
  }
  ImageDecoder::clearFrameBuffer(frameIndex);
}

void WEBPImageDecoder::readColorProfile() {
  WebPChunkIterator chunkIterator;
  if (!WebPDemuxGetChunk(m_demux, "ICCP", 1, &chunkIterator)) {
    WebPDemuxReleaseChunkIterator(&chunkIterator);
    return;
  }

  const char* profileData =
      reinterpret_cast<const char*>(chunkIterator.chunk.bytes);
  size_t profileSize = chunkIterator.chunk.size;

  setEmbeddedColorProfile(profileData, profileSize);

  WebPDemuxReleaseChunkIterator(&chunkIterator);
}

void WEBPImageDecoder::applyPostProcessing(size_t frameIndex) {
  ImageFrame& buffer = m_frameBufferCache[frameIndex];
  int width;
  int decodedHeight;
  if (!WebPIDecGetRGB(m_decoder, &decodedHeight, &width, 0, 0))
    return;  // See also https://bugs.webkit.org/show_bug.cgi?id=74062
  if (decodedHeight <= 0)
    return;

  const IntRect& frameRect = buffer.originalFrameRect();
  SECURITY_DCHECK(width == frameRect.width());
  SECURITY_DCHECK(decodedHeight <= frameRect.height());
  const int left = frameRect.x();
  const int top = frameRect.y();

  // TODO (msarett):
  // Here we apply the color space transformation to the dst space.
  // It does not really make sense to transform to a gamma-encoded
  // space and then immediately after, perform a linear premultiply
  // and linear blending.  Can we find a way to perform the
  // premultiplication and blending in a linear space?
  SkColorSpaceXform* xform = colorTransform();
  if (xform) {
    const SkColorSpaceXform::ColorFormat srcFormat =
        SkColorSpaceXform::kBGRA_8888_ColorFormat;
    const SkColorSpaceXform::ColorFormat dstFormat =
        SkColorSpaceXform::kRGBA_8888_ColorFormat;
    for (int y = m_decodedHeight; y < decodedHeight; ++y) {
      const int canvasY = top + y;
      uint8_t* row = reinterpret_cast<uint8_t*>(buffer.getAddr(left, canvasY));
      xform->apply(dstFormat, row, srcFormat, row, width,
                   kUnpremul_SkAlphaType);

      uint8_t* pixel = row;
      for (int x = 0; x < width; ++x, pixel += 4) {
        const int canvasX = left + x;
        buffer.setRGBA(canvasX, canvasY, pixel[0], pixel[1], pixel[2],
                       pixel[3]);
      }
    }
  }

  // During the decoding of the current frame, we may have set some pixels to be
  // transparent (i.e. alpha < 255). If the alpha blend source was
  // 'BlendAtopPreviousFrame', the values of these pixels should be determined
  // by blending them against the pixels of the corresponding previous frame.
  // Compute the correct opaque values now.
  // FIXME: This could be avoided if libwebp decoder had an API that used the
  // previous required frame to do the alpha-blending by itself.
  if ((m_formatFlags & ANIMATION_FLAG) && frameIndex &&
      buffer.getAlphaBlendSource() == ImageFrame::BlendAtopPreviousFrame &&
      buffer.requiredPreviousFrameIndex() != kNotFound) {
    ImageFrame& prevBuffer = m_frameBufferCache[frameIndex - 1];
    ASSERT(prevBuffer.getStatus() == ImageFrame::FrameComplete);
    ImageFrame::DisposalMethod prevDisposalMethod =
        prevBuffer.getDisposalMethod();
    if (prevDisposalMethod == ImageFrame::DisposeKeep) {
      // Blend transparent pixels with pixels in previous canvas.
      for (int y = m_decodedHeight; y < decodedHeight; ++y) {
        m_blendFunction(buffer, prevBuffer, top + y, left, width);
      }
    } else if (prevDisposalMethod == ImageFrame::DisposeOverwriteBgcolor) {
      const IntRect& prevRect = prevBuffer.originalFrameRect();
      // We need to blend a transparent pixel with the starting value (from just
      // after the initFrame() call). If the pixel belongs to prevRect, the
      // starting value was fully transparent, so this is a no-op. Otherwise, we
      // need to blend against the pixel from the previous canvas.
      for (int y = m_decodedHeight; y < decodedHeight; ++y) {
        int canvasY = top + y;
        int left1, width1, left2, width2;
        findBlendRangeAtRow(frameRect, prevRect, canvasY, left1, width1, left2,
                            width2);
        if (width1 > 0)
          m_blendFunction(buffer, prevBuffer, canvasY, left1, width1);
        if (width2 > 0)
          m_blendFunction(buffer, prevBuffer, canvasY, left2, width2);
      }
    }
  }

  m_decodedHeight = decodedHeight;
  buffer.setPixelsChanged(true);
}

size_t WEBPImageDecoder::decodeFrameCount() {
  // If updateDemuxer() fails, return the existing number of frames.  This way
  // if we get halfway through the image before decoding fails, we won't
  // suddenly start reporting that the image has zero frames.
  return updateDemuxer() ? WebPDemuxGetI(m_demux, WEBP_FF_FRAME_COUNT)
                         : m_frameBufferCache.size();
}

void WEBPImageDecoder::initializeNewFrame(size_t index) {
  if (!(m_formatFlags & ANIMATION_FLAG)) {
    ASSERT(!index);
    return;
  }
  WebPIterator animatedFrame;
  WebPDemuxGetFrame(m_demux, index + 1, &animatedFrame);
  ASSERT(animatedFrame.complete == 1);
  ImageFrame* buffer = &m_frameBufferCache[index];
  IntRect frameRect(animatedFrame.x_offset, animatedFrame.y_offset,
                    animatedFrame.width, animatedFrame.height);
  buffer->setOriginalFrameRect(
      intersection(frameRect, IntRect(IntPoint(), size())));
  buffer->setDuration(animatedFrame.duration);
  buffer->setDisposalMethod(animatedFrame.dispose_method ==
                                    WEBP_MUX_DISPOSE_BACKGROUND
                                ? ImageFrame::DisposeOverwriteBgcolor
                                : ImageFrame::DisposeKeep);
  buffer->setAlphaBlendSource(animatedFrame.blend_method == WEBP_MUX_BLEND
                                  ? ImageFrame::BlendAtopPreviousFrame
                                  : ImageFrame::BlendAtopBgcolor);
  buffer->setRequiredPreviousFrameIndex(
      findRequiredPreviousFrame(index, !animatedFrame.has_alpha));
  WebPDemuxReleaseIterator(&animatedFrame);
}

void WEBPImageDecoder::decode(size_t index) {
  if (failed())
    return;

  Vector<size_t> framesToDecode = findFramesToDecode(index);

  ASSERT(m_demux);
  for (auto i = framesToDecode.rbegin(); i != framesToDecode.rend(); ++i) {
    if ((m_formatFlags & ANIMATION_FLAG) && !initFrameBuffer(*i))
      return;
    WebPIterator webpFrame;
    if (!WebPDemuxGetFrame(m_demux, *i + 1, &webpFrame)) {
      setFailed();
    } else {
      decodeSingleFrame(webpFrame.fragment.bytes, webpFrame.fragment.size, *i);
      WebPDemuxReleaseIterator(&webpFrame);
    }
    if (failed())
      return;

    // If this returns false, we need more data to continue decoding.
    if (!postDecodeProcessing(*i))
      break;
  }

  // It is also a fatal error if all data is received and we have decoded all
  // frames available but the file is truncated.
  if (index >= m_frameBufferCache.size() - 1 && isAllDataReceived() &&
      m_demux && m_demuxState != WEBP_DEMUX_DONE)
    setFailed();
}

bool WEBPImageDecoder::decodeSingleFrame(const uint8_t* dataBytes,
                                         size_t dataSize,
                                         size_t frameIndex) {
  if (failed())
    return false;

  ASSERT(isDecodedSizeAvailable());

  ASSERT(m_frameBufferCache.size() > frameIndex);
  ImageFrame& buffer = m_frameBufferCache[frameIndex];
  ASSERT(buffer.getStatus() != ImageFrame::FrameComplete);

  if (buffer.getStatus() == ImageFrame::FrameEmpty) {
    if (!buffer.setSizeAndColorSpace(size().width(), size().height(),
                                     colorSpaceForSkImages()))
      return setFailed();
    buffer.setStatus(ImageFrame::FramePartial);
    // The buffer is transparent outside the decoded area while the image is
    // loading. The correct alpha value for the frame will be set when it is
    // fully decoded.
    buffer.setHasAlpha(true);
    buffer.setOriginalFrameRect(IntRect(IntPoint(), size()));
  }

  const IntRect& frameRect = buffer.originalFrameRect();
  if (!m_decoder) {
    WEBP_CSP_MODE mode = outputMode(m_formatFlags & ALPHA_FLAG);
    if (!m_premultiplyAlpha)
      mode = outputMode(false);
    if (colorTransform()) {
      // Swizzling between RGBA and BGRA is zero cost in a color transform.
      // So when we have a color transform, we should decode to whatever is
      // easiest for libwebp, and then let the color transform swizzle if
      // necessary.
      // Lossy webp is encoded as YUV (so RGBA and BGRA are the same cost).
      // Lossless webp is encoded as BGRA. This means decoding to BGRA is
      // either faster or the same cost as RGBA.
      mode = MODE_BGRA;
    }
    WebPInitDecBuffer(&m_decoderBuffer);
    m_decoderBuffer.colorspace = mode;
    m_decoderBuffer.u.RGBA.stride =
        size().width() * sizeof(ImageFrame::PixelData);
    m_decoderBuffer.u.RGBA.size =
        m_decoderBuffer.u.RGBA.stride * frameRect.height();
    m_decoderBuffer.is_external_memory = 1;
    m_decoder = WebPINewDecoder(&m_decoderBuffer);
    if (!m_decoder)
      return setFailed();
  }

  m_decoderBuffer.u.RGBA.rgba =
      reinterpret_cast<uint8_t*>(buffer.getAddr(frameRect.x(), frameRect.y()));

  switch (WebPIUpdate(m_decoder, dataBytes, dataSize)) {
    case VP8_STATUS_OK:
      applyPostProcessing(frameIndex);
      buffer.setHasAlpha((m_formatFlags & ALPHA_FLAG) ||
                         m_frameBackgroundHasAlpha);
      buffer.setStatus(ImageFrame::FrameComplete);
      clearDecoder();
      return true;
    case VP8_STATUS_SUSPENDED:
      if (!isAllDataReceived() && !frameIsCompleteAtIndex(frameIndex)) {
        applyPostProcessing(frameIndex);
        return false;
      }
    // FALLTHROUGH
    default:
      clear();
      return setFailed();
  }
}

}  // namespace blink