1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*
* Copyright (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "platform/transforms/Rotation.h"
#include "platform/animation/AnimationUtilities.h"
#include "platform/transforms/TransformationMatrix.h"
namespace blink {
namespace {
const double kAngleEpsilon = 1e-4;
Rotation extractFromMatrix(const TransformationMatrix& matrix,
const Rotation& fallbackValue) {
TransformationMatrix::DecomposedType decomp;
if (!matrix.decompose(decomp))
return fallbackValue;
double x = -decomp.quaternionX;
double y = -decomp.quaternionY;
double z = -decomp.quaternionZ;
double length = std::sqrt(x * x + y * y + z * z);
double angle = 0;
if (length > 0.00001) {
x /= length;
y /= length;
z /= length;
angle = rad2deg(std::acos(decomp.quaternionW) * 2);
} else {
x = 0;
y = 0;
z = 1;
}
return Rotation(FloatPoint3D(x, y, z), angle);
}
} // namespace
bool Rotation::getCommonAxis(const Rotation& a,
const Rotation& b,
FloatPoint3D& resultAxis,
double& resultAngleA,
double& resultAngleB) {
resultAxis = FloatPoint3D(0, 0, 1);
resultAngleA = 0;
resultAngleB = 0;
bool isZeroA = a.axis.isZero() || fabs(a.angle) < kAngleEpsilon;
bool isZeroB = b.axis.isZero() || fabs(b.angle) < kAngleEpsilon;
if (isZeroA && isZeroB)
return true;
if (isZeroA) {
resultAxis = b.axis;
resultAngleB = b.angle;
return true;
}
if (isZeroB) {
resultAxis = a.axis;
resultAngleA = a.angle;
return true;
}
double dot = a.axis.dot(b.axis);
if (dot < 0)
return false;
double aSquared = a.axis.lengthSquared();
double bSquared = b.axis.lengthSquared();
double error = std::abs(1 - (dot * dot) / (aSquared * bSquared));
if (error > kAngleEpsilon)
return false;
resultAxis = a.axis;
resultAngleA = a.angle;
resultAngleB = b.angle;
return true;
}
Rotation Rotation::slerp(const Rotation& from,
const Rotation& to,
double progress) {
double fromAngle;
double toAngle;
FloatPoint3D axis;
if (getCommonAxis(from, to, axis, fromAngle, toAngle))
return Rotation(axis, blink::blend(fromAngle, toAngle, progress));
TransformationMatrix fromMatrix;
TransformationMatrix toMatrix;
fromMatrix.rotate3d(from);
toMatrix.rotate3d(to);
toMatrix.blend(fromMatrix, progress);
return extractFromMatrix(toMatrix, progress < 0.5 ? from : to);
}
Rotation Rotation::add(const Rotation& a, const Rotation& b) {
double angleA;
double angleB;
FloatPoint3D axis;
if (getCommonAxis(a, b, axis, angleA, angleB))
return Rotation(axis, angleA + angleB);
TransformationMatrix matrix;
matrix.rotate3d(a);
matrix.rotate3d(b);
return extractFromMatrix(matrix, b);
}
} // namespace blink
|