File: HashTraits.h

package info (click to toggle)
chromium-browser 57.0.2987.98-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 2,637,852 kB
  • ctags: 2,544,394
  • sloc: cpp: 12,815,961; ansic: 3,676,222; python: 1,147,112; asm: 526,608; java: 523,212; xml: 286,794; perl: 92,654; sh: 86,408; objc: 73,271; makefile: 27,698; cs: 18,487; yacc: 13,031; tcl: 12,957; pascal: 4,875; ml: 4,716; lex: 3,904; sql: 3,862; ruby: 1,982; lisp: 1,508; php: 1,368; exp: 404; awk: 325; csh: 117; jsp: 39; sed: 37
file content (429 lines) | stat: -rw-r--r-- 15,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*
 * Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights
 * reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef WTF_HashTraits_h
#define WTF_HashTraits_h

#include "wtf/Forward.h"
#include "wtf/HashFunctions.h"
#include "wtf/HashTableDeletedValueType.h"
#include "wtf/StdLibExtras.h"
#include "wtf/TypeTraits.h"
#include <limits>
#include <memory>
#include <string.h>  // For memset.
#include <type_traits>
#include <utility>

namespace WTF {

template <bool isInteger, typename T>
struct GenericHashTraitsBase;
template <typename T>
struct HashTraits;

enum ShouldWeakPointersBeMarkedStrongly {
  WeakPointersActStrong,
  WeakPointersActWeak
};

template <typename T>
struct GenericHashTraitsBase<false, T> {
  // The emptyValueIsZero flag is used to optimize allocation of empty hash
  // tables with zeroed memory.
  static const bool emptyValueIsZero = false;

  // The hasIsEmptyValueFunction flag allows the hash table to automatically
  // generate code to check for the empty value when it can be done with the
  // equality operator, but allows custom functions for cases like String that
  // need them.
  static const bool hasIsEmptyValueFunction = false;

// The starting table size. Can be overridden when we know beforehand that a
// hash table will have at least N entries.
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
  static const unsigned minimumTableSize = 1;
#else
  static const unsigned minimumTableSize = 8;
#endif

  // When a hash table backing store is traced, its elements will be
  // traced if their class type has a trace method. However, weak-referenced
  // elements should not be traced then, but handled by the weak processing
  // phase that follows.
  template <typename U = void>
  struct IsTraceableInCollection {
    static const bool value = IsTraceable<T>::value && !IsWeak<T>::value;
  };

  // The NeedsToForbidGCOnMove flag is used to make the hash table move
  // operations safe when GC is enabled: if a move constructor invokes
  // an allocation triggering the GC then it should be invoked within GC
  // forbidden scope.
  template <typename U = void>
  struct NeedsToForbidGCOnMove {
    // TODO(yutak): Consider using of std:::is_trivially_move_constructible
    // when it is accessible.
    static const bool value = !std::is_pod<T>::value;
  };

  static const WeakHandlingFlag weakHandlingFlag =
      IsWeak<T>::value ? WeakHandlingInCollections
                       : NoWeakHandlingInCollections;
};

// Default integer traits disallow both 0 and -1 as keys (max value instead of
// -1 for unsigned).
template <typename T>
struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> {
  static const bool emptyValueIsZero = true;
  static void constructDeletedValue(T& slot, bool) {
    slot = static_cast<T>(-1);
  }
  static bool isDeletedValue(T value) { return value == static_cast<T>(-1); }
};

template <typename T>
struct GenericHashTraits
    : GenericHashTraitsBase<std::is_integral<T>::value, T> {
  typedef T TraitType;
  typedef T EmptyValueType;

  static T emptyValue() { return T(); }

  // Type for functions that do not take ownership, such as contains.
  typedef const T& PeekInType;
  typedef T* IteratorGetType;
  typedef const T* IteratorConstGetType;
  typedef T& IteratorReferenceType;
  typedef const T& IteratorConstReferenceType;
  static IteratorReferenceType getToReferenceConversion(IteratorGetType x) {
    return *x;
  }
  static IteratorConstReferenceType getToReferenceConstConversion(
      IteratorConstGetType x) {
    return *x;
  }

  template <typename IncomingValueType>
  static void store(IncomingValueType&& value, T& storage) {
    storage = std::forward<IncomingValueType>(value);
  }

  // Type for return value of functions that do not transfer ownership, such
  // as get.
  // FIXME: We could change this type to const T& for better performance if we
  // figured out a way to handle the return value from emptyValue, which is a
  // temporary.
  typedef T PeekOutType;
  static const T& peek(const T& value) { return value; }
};

template <typename T>
struct HashTraits : GenericHashTraits<T> {};

template <typename T>
struct FloatHashTraits : GenericHashTraits<T> {
  static T emptyValue() { return std::numeric_limits<T>::infinity(); }
  static void constructDeletedValue(T& slot, bool) {
    slot = -std::numeric_limits<T>::infinity();
  }
  static bool isDeletedValue(T value) {
    return value == -std::numeric_limits<T>::infinity();
  }
};

template <>
struct HashTraits<float> : FloatHashTraits<float> {};
template <>
struct HashTraits<double> : FloatHashTraits<double> {};

// Default unsigned traits disallow both 0 and max as keys -- use these traits
// to allow zero and disallow max - 1.
template <typename T>
struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> {
  static const bool emptyValueIsZero = false;
  static T emptyValue() { return std::numeric_limits<T>::max(); }
  static void constructDeletedValue(T& slot, bool) {
    slot = std::numeric_limits<T>::max() - 1;
  }
  static bool isDeletedValue(T value) {
    return value == std::numeric_limits<T>::max() - 1;
  }
};

template <typename P>
struct HashTraits<P*> : GenericHashTraits<P*> {
  static const bool emptyValueIsZero = true;
  static void constructDeletedValue(P*& slot, bool) {
    slot = reinterpret_cast<P*>(-1);
  }
  static bool isDeletedValue(P* value) {
    return value == reinterpret_cast<P*>(-1);
  }
};

template <typename T>
struct SimpleClassHashTraits : GenericHashTraits<T> {
  static const bool emptyValueIsZero = true;
  template <typename U = void>
  struct NeedsToForbidGCOnMove {
    static const bool value = false;
  };
  static void constructDeletedValue(T& slot, bool) {
    new (NotNull, &slot) T(HashTableDeletedValue);
  }
  static bool isDeletedValue(const T& value) {
    return value.isHashTableDeletedValue();
  }
};

template <typename P>
struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> {
  typedef std::nullptr_t EmptyValueType;
  static EmptyValueType emptyValue() { return nullptr; }

  static const bool hasIsEmptyValueFunction = true;
  static bool isEmptyValue(const RefPtr<P>& value) { return !value; }

  typedef RefPtrValuePeeker<P> PeekInType;
  typedef RefPtr<P>* IteratorGetType;
  typedef const RefPtr<P>* IteratorConstGetType;
  typedef RefPtr<P>& IteratorReferenceType;
  typedef const RefPtr<P>& IteratorConstReferenceType;
  static IteratorReferenceType getToReferenceConversion(IteratorGetType x) {
    return *x;
  }
  static IteratorConstReferenceType getToReferenceConstConversion(
      IteratorConstGetType x) {
    return *x;
  }

  static void store(PassRefPtr<P> value, RefPtr<P>& storage) {
    storage = value;
  }

  typedef P* PeekOutType;
  static PeekOutType peek(const RefPtr<P>& value) { return value.get(); }
  static PeekOutType peek(std::nullptr_t) { return 0; }
};

template <typename T>
struct HashTraits<std::unique_ptr<T>>
    : SimpleClassHashTraits<std::unique_ptr<T>> {
  using EmptyValueType = std::nullptr_t;
  static EmptyValueType emptyValue() { return nullptr; }

  static const bool hasIsEmptyValueFunction = true;
  static bool isEmptyValue(const std::unique_ptr<T>& value) { return !value; }

  using PeekInType = T*;

  static void store(std::unique_ptr<T>&& value, std::unique_ptr<T>& storage) {
    storage = std::move(value);
  }

  using PeekOutType = T*;
  static PeekOutType peek(const std::unique_ptr<T>& value) {
    return value.get();
  }
  static PeekOutType peek(std::nullptr_t) { return nullptr; }

  static void constructDeletedValue(std::unique_ptr<T>& slot, bool) {
    // Dirty trick: implant an invalid pointer to unique_ptr. Destructor isn't
    // called for deleted buckets, so this is okay.
    new (NotNull, &slot) std::unique_ptr<T>(reinterpret_cast<T*>(1u));
  }
  static bool isDeletedValue(const std::unique_ptr<T>& value) {
    return value.get() == reinterpret_cast<T*>(1u);
  }
};

template <>
struct HashTraits<String> : SimpleClassHashTraits<String> {
  static const bool hasIsEmptyValueFunction = true;
  static bool isEmptyValue(const String&);
};

// This struct template is an implementation detail of the
// isHashTraitsEmptyValue function, which selects either the emptyValue function
// or the isEmptyValue function to check for empty values.
template <typename Traits, bool hasEmptyValueFunction>
struct HashTraitsEmptyValueChecker;
template <typename Traits>
struct HashTraitsEmptyValueChecker<Traits, true> {
  template <typename T>
  static bool isEmptyValue(const T& value) {
    return Traits::isEmptyValue(value);
  }
};
template <typename Traits>
struct HashTraitsEmptyValueChecker<Traits, false> {
  template <typename T>
  static bool isEmptyValue(const T& value) {
    return value == Traits::emptyValue();
  }
};
template <typename Traits, typename T>
inline bool isHashTraitsEmptyValue(const T& value) {
  return HashTraitsEmptyValueChecker<
      Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value);
}

template <typename FirstTraitsArg, typename SecondTraitsArg>
struct PairHashTraits
    : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType,
                                  typename SecondTraitsArg::TraitType>> {
  typedef FirstTraitsArg FirstTraits;
  typedef SecondTraitsArg SecondTraits;
  typedef std::pair<typename FirstTraits::TraitType,
                    typename SecondTraits::TraitType>
      TraitType;
  typedef std::pair<typename FirstTraits::EmptyValueType,
                    typename SecondTraits::EmptyValueType>
      EmptyValueType;

  static const bool emptyValueIsZero =
      FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero;
  static EmptyValueType emptyValue() {
    return std::make_pair(FirstTraits::emptyValue(),
                          SecondTraits::emptyValue());
  }

  static const bool hasIsEmptyValueFunction =
      FirstTraits::hasIsEmptyValueFunction ||
      SecondTraits::hasIsEmptyValueFunction;
  static bool isEmptyValue(const TraitType& value) {
    return isHashTraitsEmptyValue<FirstTraits>(value.first) &&
           isHashTraitsEmptyValue<SecondTraits>(value.second);
  }

  static const unsigned minimumTableSize = FirstTraits::minimumTableSize;

  static void constructDeletedValue(TraitType& slot, bool zeroValue) {
    FirstTraits::constructDeletedValue(slot.first, zeroValue);
    // For GC collections the memory for the backing is zeroed when it is
    // allocated, and the constructors may take advantage of that,
    // especially if a GC occurs during insertion of an entry into the
    // table. This slot is being marked deleted, but If the slot is reused
    // at a later point, the same assumptions around memory zeroing must
    // hold as they did at the initial allocation.  Therefore we zero the
    // value part of the slot here for GC collections.
    if (zeroValue)
      memset(reinterpret_cast<void*>(&slot.second), 0, sizeof(slot.second));
  }
  static bool isDeletedValue(const TraitType& value) {
    return FirstTraits::isDeletedValue(value.first);
  }
};

template <typename First, typename Second>
struct HashTraits<std::pair<First, Second>>
    : public PairHashTraits<HashTraits<First>, HashTraits<Second>> {};

template <typename KeyTypeArg, typename ValueTypeArg>
struct KeyValuePair {
  typedef KeyTypeArg KeyType;

  template <typename IncomingKeyType, typename IncomingValueType>
  KeyValuePair(IncomingKeyType&& key, IncomingValueType&& value)
      : key(std::forward<IncomingKeyType>(key)),
        value(std::forward<IncomingValueType>(value)) {}

  template <typename OtherKeyType, typename OtherValueType>
  KeyValuePair(KeyValuePair<OtherKeyType, OtherValueType>&& other)
      : key(std::move(other.key)), value(std::move(other.value)) {}

  KeyTypeArg key;
  ValueTypeArg value;
};

template <typename KeyTraitsArg, typename ValueTraitsArg>
struct KeyValuePairHashTraits
    : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType,
                                     typename ValueTraitsArg::TraitType>> {
  typedef KeyTraitsArg KeyTraits;
  typedef ValueTraitsArg ValueTraits;
  typedef KeyValuePair<typename KeyTraits::TraitType,
                       typename ValueTraits::TraitType>
      TraitType;
  typedef KeyValuePair<typename KeyTraits::EmptyValueType,
                       typename ValueTraits::EmptyValueType>
      EmptyValueType;

  static const bool emptyValueIsZero =
      KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero;
  static EmptyValueType emptyValue() {
    return KeyValuePair<typename KeyTraits::EmptyValueType,
                        typename ValueTraits::EmptyValueType>(
        KeyTraits::emptyValue(), ValueTraits::emptyValue());
  }

  template <typename U = void>
  struct IsTraceableInCollection {
    static const bool value = IsTraceableInCollectionTrait<KeyTraits>::value ||
                              IsTraceableInCollectionTrait<ValueTraits>::value;
  };

  template <typename U = void>
  struct NeedsToForbidGCOnMove {
    static const bool value =
        KeyTraits::template NeedsToForbidGCOnMove<>::value ||
        ValueTraits::template NeedsToForbidGCOnMove<>::value;
  };

  static const WeakHandlingFlag weakHandlingFlag =
      (KeyTraits::weakHandlingFlag == WeakHandlingInCollections ||
       ValueTraits::weakHandlingFlag == WeakHandlingInCollections)
          ? WeakHandlingInCollections
          : NoWeakHandlingInCollections;

  static const unsigned minimumTableSize = KeyTraits::minimumTableSize;

  static void constructDeletedValue(TraitType& slot, bool zeroValue) {
    KeyTraits::constructDeletedValue(slot.key, zeroValue);
    // See similar code in this file for why we need to do this.
    if (zeroValue)
      memset(reinterpret_cast<void*>(&slot.value), 0, sizeof(slot.value));
  }
  static bool isDeletedValue(const TraitType& value) {
    return KeyTraits::isDeletedValue(value.key);
  }
};

template <typename Key, typename Value>
struct HashTraits<KeyValuePair<Key, Value>>
    : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> {};

template <typename T>
struct NullableHashTraits : public HashTraits<T> {
  static const bool emptyValueIsZero = false;
  static T emptyValue() { return reinterpret_cast<T>(1); }
};

}  // namespace WTF

using WTF::HashTraits;
using WTF::PairHashTraits;
using WTF::NullableHashTraits;
using WTF::SimpleClassHashTraits;

#endif  // WTF_HashTraits_h