1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_MathExtras_h
#define WTF_MathExtras_h
#include "wtf/Allocator.h"
#include "wtf/Assertions.h"
#include "wtf/CPU.h"
#include <cmath>
#include <cstddef>
#include <limits>
#if COMPILER(MSVC)
// Make math.h behave like other platforms.
#define _USE_MATH_DEFINES
// Even if math.h was already included, including math.h again with
// _USE_MATH_DEFINES adds the extra defines.
#include <math.h>
#include <stdint.h>
#endif
#if OS(OPENBSD)
#include <machine/ieee.h>
#include <sys/types.h>
#endif
const double piDouble = M_PI;
const float piFloat = static_cast<float>(M_PI);
const double piOverTwoDouble = M_PI_2;
const float piOverTwoFloat = static_cast<float>(M_PI_2);
const double piOverFourDouble = M_PI_4;
const float piOverFourFloat = static_cast<float>(M_PI_4);
const double twoPiDouble = piDouble * 2.0;
const float twoPiFloat = piFloat * 2.0f;
#if COMPILER(MSVC)
// VS2013 has most of the math functions now, but we still need to work
// around various differences in behavior of Inf.
// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN
// instead of specific values.
inline double wtf_atan2(double x, double y) {
double posInf = std::numeric_limits<double>::infinity();
double negInf = -std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
double result = nan;
if (x == posInf && y == posInf)
result = piOverFourDouble;
else if (x == posInf && y == negInf)
result = 3 * piOverFourDouble;
else if (x == negInf && y == posInf)
result = -piOverFourDouble;
else if (x == negInf && y == negInf)
result = -3 * piOverFourDouble;
else
result = ::atan2(x, y);
return result;
}
// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN
// instead of x.
inline double wtf_fmod(double x, double y) {
return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y);
}
// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead
// of 1.
inline double wtf_pow(double x, double y) {
return y == 0 ? 1 : pow(x, y);
}
#define atan2(x, y) wtf_atan2(x, y)
#define fmod(x, y) wtf_fmod(x, y)
#define pow(x, y) wtf_pow(x, y)
#endif // COMPILER(MSVC)
inline double deg2rad(double d) {
return d * piDouble / 180.0;
}
inline double rad2deg(double r) {
return r * 180.0 / piDouble;
}
inline double deg2grad(double d) {
return d * 400.0 / 360.0;
}
inline double grad2deg(double g) {
return g * 360.0 / 400.0;
}
inline double turn2deg(double t) {
return t * 360.0;
}
inline double deg2turn(double d) {
return d / 360.0;
}
inline double rad2grad(double r) {
return r * 200.0 / piDouble;
}
inline double grad2rad(double g) {
return g * piDouble / 200.0;
}
inline double turn2grad(double t) {
return t * 400;
}
inline double grad2turn(double g) {
return g / 400;
}
inline float deg2rad(float d) {
return d * piFloat / 180.0f;
}
inline float rad2deg(float r) {
return r * 180.0f / piFloat;
}
inline float deg2grad(float d) {
return d * 400.0f / 360.0f;
}
inline float grad2deg(float g) {
return g * 360.0f / 400.0f;
}
inline float turn2deg(float t) {
return t * 360.0f;
}
inline float deg2turn(float d) {
return d / 360.0f;
}
inline float rad2grad(float r) {
return r * 200.0f / piFloat;
}
inline float grad2rad(float g) {
return g * piFloat / 200.0f;
}
inline float turn2grad(float t) {
return t * 400;
}
inline float grad2turn(float g) {
return g / 400;
}
// clampTo() is implemented by templated helper classes (to allow for partial
// template specialization) as well as several helper functions.
// This helper function can be called when we know that:
// (1) The type signednesses match so the compiler will not produce signed vs.
// unsigned warnings
// (2) The default type promotions/conversions are sufficient to handle things
// correctly
template <typename LimitType, typename ValueType>
inline LimitType clampToDirectComparison(ValueType value,
LimitType min,
LimitType max) {
if (value >= max)
return max;
return (value <= min) ? min : static_cast<LimitType>(value);
}
// For any floating-point limits, or integral limits smaller than long long, we
// can cast the limits to double without losing precision; then the only cases
// where |value| can't be represented accurately as a double are the ones where
// it's outside the limit range anyway. So doing all comparisons as doubles
// will give correct results.
//
// In some cases, we can get better performance by using
// clampToDirectComparison(). We use a templated class to switch between these
// two cases (instead of simply using a conditional within one function) in
// order to only compile the clampToDirectComparison() code for cases where it
// will actually be used; this prevents the compiler from emitting warnings
// about unsafe code (even though we wouldn't actually be executing that code).
template <bool canUseDirectComparison, typename LimitType, typename ValueType>
class ClampToNonLongLongHelper;
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<true, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline LimitType clampTo(ValueType value,
LimitType min,
LimitType max) {
return clampToDirectComparison(value, min, max);
}
};
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<false, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline LimitType clampTo(ValueType value,
LimitType min,
LimitType max) {
const double doubleValue = static_cast<double>(value);
if (doubleValue >= static_cast<double>(max))
return max;
if (doubleValue <= static_cast<double>(min))
return min;
// If the limit type is integer, we might get better performance by
// casting |value| (as opposed to |doubleValue|) to the limit type.
return std::numeric_limits<LimitType>::is_integer
? static_cast<LimitType>(value)
: static_cast<LimitType>(doubleValue);
}
};
// The unspecialized version of this templated class handles clamping to
// anything other than [unsigned] long long int limits. It simply uses the
// class above to toggle between the "fast" and "safe" clamp implementations.
template <typename LimitType, typename ValueType>
class ClampToHelper {
public:
static inline LimitType clampTo(ValueType value,
LimitType min,
LimitType max) {
// We only use clampToDirectComparison() when the integerness and
// signedness of the two types matches.
//
// If the integerness of the types doesn't match, then at best
// clampToDirectComparison() won't be much more efficient than the
// cast-everything-to-double method, since we'll need to convert to
// floating point anyway; at worst, we risk incorrect results when
// clamping a float to a 32-bit integral type due to potential precision
// loss.
//
// If the signedness doesn't match, clampToDirectComparison() will
// produce warnings about comparing signed vs. unsigned, which are apt
// since negative signed values will be converted to large unsigned ones
// and we'll get incorrect results.
return ClampToNonLongLongHelper <
std::numeric_limits<LimitType>::is_integer ==
std::numeric_limits<ValueType>::is_integer &&
std::numeric_limits<LimitType>::is_signed ==
std::numeric_limits<ValueType>::is_signed,
LimitType, ValueType > ::clampTo(value, min, max);
}
};
// Clamping to [unsigned] long long int limits requires more care. These may
// not be accurately representable as doubles, so instead we cast |value| to the
// limit type. But that cast is undefined if |value| is floating point and
// outside the representable range of the limit type, so we also have to check
// for that case explicitly.
template <typename ValueType>
class ClampToHelper<long long int, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline long long int clampTo(ValueType value,
long long int min,
long long int max) {
if (!std::numeric_limits<ValueType>::is_integer) {
if (value > 0) {
if (static_cast<double>(value) >=
static_cast<double>(std::numeric_limits<long long int>::max()))
return max;
} else if (static_cast<double>(value) <=
static_cast<double>(
std::numeric_limits<long long int>::min())) {
return min;
}
}
// Note: If |value| were unsigned long long int, it could be larger than
// the largest long long int, and this code would be wrong; we handle
// this case with a separate full specialization below.
return clampToDirectComparison(static_cast<long long int>(value), min, max);
}
};
// This specialization handles the case where the above partial specialization
// would be potentially incorrect.
template <>
class ClampToHelper<long long int, unsigned long long int> {
STATIC_ONLY(ClampToHelper);
public:
static inline long long int clampTo(unsigned long long int value,
long long int min,
long long int max) {
if (max <= 0 || value >= static_cast<unsigned long long int>(max))
return max;
const long long int longLongValue = static_cast<long long int>(value);
return (longLongValue <= min) ? min : longLongValue;
}
};
// This is similar to the partial specialization that clamps to long long int,
// but because the lower-bound check is done for integer value types as well, we
// don't need a <unsigned long long int, long long int> full specialization.
template <typename ValueType>
class ClampToHelper<unsigned long long int, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline unsigned long long int clampTo(ValueType value,
unsigned long long int min,
unsigned long long int max) {
if (value <= 0)
return min;
if (!std::numeric_limits<ValueType>::is_integer) {
if (static_cast<double>(value) >=
static_cast<double>(
std::numeric_limits<unsigned long long int>::max()))
return max;
}
return clampToDirectComparison(static_cast<unsigned long long int>(value),
min, max);
}
};
template <typename T>
inline T defaultMaximumForClamp() {
return std::numeric_limits<T>::max();
}
// This basically reimplements C++11's std::numeric_limits<T>::lowest().
template <typename T>
inline T defaultMinimumForClamp() {
return std::numeric_limits<T>::min();
}
template <>
inline float defaultMinimumForClamp<float>() {
return -std::numeric_limits<float>::max();
}
template <>
inline double defaultMinimumForClamp<double>() {
return -std::numeric_limits<double>::max();
}
// And, finally, the actual function for people to call.
template <typename LimitType, typename ValueType>
inline LimitType clampTo(ValueType value,
LimitType min = defaultMinimumForClamp<LimitType>(),
LimitType max = defaultMaximumForClamp<LimitType>()) {
DCHECK(!std::isnan(static_cast<double>(value)));
DCHECK_LE(min, max); // This also ensures |min| and |max| aren't NaN.
return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
}
inline bool isWithinIntRange(float x) {
return x > static_cast<float>(std::numeric_limits<int>::min()) &&
x < static_cast<float>(std::numeric_limits<int>::max());
}
static size_t greatestCommonDivisor(size_t a, size_t b) {
return b ? greatestCommonDivisor(b, a % b) : a;
}
inline size_t lowestCommonMultiple(size_t a, size_t b) {
return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
}
#ifndef UINT64_C
#if COMPILER(MSVC)
#define UINT64_C(c) c##ui64
#else
#define UINT64_C(c) c##ull
#endif
#endif
// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value) {
if (std::isnan(d) || std::isinf(d)) {
value = 0;
} else {
// -2^{64} < fmodValue < 2^{64}.
double fmodValue =
fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
if (fmodValue >= 0) {
// 0 <= fmodValue < 2^{64}.
// 0 <= value < 2^{64}. This cast causes no loss.
value = static_cast<unsigned long long>(fmodValue);
} else {
// -2^{64} < fmodValue < 0.
// 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
unsigned long long fmodValueInUnsignedLongLong =
static_cast<unsigned long long>(-fmodValue);
// -1 < (std::numeric_limits<unsigned long long>::max() -
// fmodValueInUnsignedLongLong)
// < 2^{64} - 1.
// 0 < value < 2^{64}.
value = std::numeric_limits<unsigned long long>::max() -
fmodValueInUnsignedLongLong + 1;
}
}
}
namespace WTF {
inline unsigned fastLog2(unsigned i) {
unsigned log2 = 0;
if (i & (i - 1))
log2 += 1;
if (i >> 16)
log2 += 16, i >>= 16;
if (i >> 8)
log2 += 8, i >>= 8;
if (i >> 4)
log2 += 4, i >>= 4;
if (i >> 2)
log2 += 2, i >>= 2;
if (i >> 1)
log2 += 1;
return log2;
}
} // namespace WTF
#endif // #ifndef WTF_MathExtras_h
|