1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsConic.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkReduceOrder.h"
#include "SkTSort.h"
static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
const double adjust = sqrt(3.) / 36;
SkDCubic sub;
const SkDCubic* cPtr;
if (start == 0) {
cPtr = &cubic;
} else {
// OPTIMIZE: special-case half-split ?
sub = cubic.subDivide(start, 1);
cPtr = ⊂
}
const SkDCubic& c = *cPtr;
double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
double dist = sqrt(dx * dx + dy * dy);
double tDiv3 = precision / (adjust * dist);
double t = SkDCubeRoot(tDiv3);
if (start > 0) {
t = start + (1 - start) * t;
}
return t;
}
static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
double tDiv = calc_t_div(cubic, precision, 0);
if (tDiv >= 1) {
return true;
}
if (tDiv >= 0.5) {
ts->push_back(0.5);
return true;
}
return false;
}
static void addTs(const SkDCubic& cubic, double precision, double start, double end,
SkTArray<double, true>* ts) {
double tDiv = calc_t_div(cubic, precision, 0);
double parts = ceil(1.0 / tDiv);
for (double index = 0; index < parts; ++index) {
double newT = start + (index / parts) * (end - start);
if (newT > 0 && newT < 1) {
ts->push_back(newT);
}
}
}
static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) {
SkReduceOrder reducer;
int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics);
if (order < 3) {
return;
}
double inflectT[5];
int inflections = cubic->findInflections(inflectT);
SkASSERT(inflections <= 2);
if (!cubic->endsAreExtremaInXOrY()) {
inflections += cubic->findMaxCurvature(&inflectT[inflections]);
SkASSERT(inflections <= 5);
}
SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
// OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
// own subroutine?
while (inflections && approximately_less_than_zero(inflectT[0])) {
memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
}
int start = 0;
int next = 1;
while (next < inflections) {
if (!approximately_equal(inflectT[start], inflectT[next])) {
++start;
++next;
continue;
}
memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
}
while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
--inflections;
}
SkDCubicPair pair;
if (inflections == 1) {
pair = cubic->chopAt(inflectT[0]);
int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
if (orderP1 < 2) {
--inflections;
} else {
int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
if (orderP2 < 2) {
--inflections;
}
}
}
if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) {
return;
}
if (inflections == 1) {
pair = cubic->chopAt(inflectT[0]);
addTs(pair.first(), precision, 0, inflectT[0], ts);
addTs(pair.second(), precision, inflectT[0], 1, ts);
return;
}
if (inflections > 1) {
SkDCubic part = cubic->subDivide(0, inflectT[0]);
addTs(part, precision, 0, inflectT[0], ts);
int last = inflections - 1;
for (int idx = 0; idx < last; ++idx) {
part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]);
addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
}
part = cubic->subDivide(inflectT[last], 1);
addTs(part, precision, inflectT[last], 1, ts);
return;
}
addTs(*cubic, precision, 0, 1, ts);
}
void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
SkTArray<double, true> ts;
toQuadraticTs(&cubic, precision, &ts);
if (ts.count() <= 0) {
SkDQuad quad = cubic.toQuad();
quads.push_back(quad);
return;
}
double tStart = 0;
for (int i1 = 0; i1 <= ts.count(); ++i1) {
const double tEnd = i1 < ts.count() ? ts[i1] : 1;
SkDRect bounds;
bounds.setBounds(cubic);
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
if (quad[1].fX < bounds.fLeft) {
quad[1].fX = bounds.fLeft;
} else if (quad[1].fX > bounds.fRight) {
quad[1].fX = bounds.fRight;
}
if (quad[1].fY < bounds.fTop) {
quad[1].fY = bounds.fTop;
} else if (quad[1].fY > bounds.fBottom) {
quad[1].fY = bounds.fBottom;
}
quads.push_back(quad);
tStart = tEnd;
}
}
void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
quadPath->reset();
SkDCubic cubic;
SkTArray<SkDQuad, true> quads;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
quadPath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
quadPath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
quads.reset();
cubic.set(pts);
CubicToQuads(cubic, cubic.calcPrecision(), quads);
for (int index = 0; index < quads.count(); ++index) {
SkPoint qPts[2] = {
quads[index][1].asSkPoint(),
quads[index][2].asSkPoint()
};
quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
}
break;
case SkPath::kClose_Verb:
quadPath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
simplePath->reset();
SkDCubic cubic;
SkPath::RawIter iter(cubicPath);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
simplePath->moveTo(pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
simplePath->lineTo(pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb: {
cubic.set(pts);
double tInflects[2];
int inflections = cubic.findInflections(tInflects);
if (inflections > 1 && tInflects[0] > tInflects[1]) {
SkTSwap(tInflects[0], tInflects[1]);
}
double lo = 0;
for (int index = 0; index <= inflections; ++index) {
double hi = index < inflections ? tInflects[index] : 1;
SkDCubic part = cubic.subDivide(lo, hi);
SkPoint cPts[3];
cPts[0] = part[1].asSkPoint();
cPts[1] = part[2].asSkPoint();
cPts[2] = part[3].asSkPoint();
simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
cPts[2].fX, cPts[2].fY);
lo = hi;
}
break;
}
case SkPath::kClose_Verb:
simplePath->close();
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static bool SkDoubleIsNaN(double x) {
return x != x;
}
bool ValidBounds(const SkPathOpsBounds& bounds) {
if (SkScalarIsNaN(bounds.fLeft)) {
return false;
}
if (SkScalarIsNaN(bounds.fTop)) {
return false;
}
if (SkScalarIsNaN(bounds.fRight)) {
return false;
}
return !SkScalarIsNaN(bounds.fBottom);
}
bool ValidConic(const SkDConic& conic) {
for (int index = 0; index < SkDConic::kPointCount; ++index) {
if (!ValidPoint(conic[index])) {
return false;
}
}
if (SkDoubleIsNaN(conic.fWeight)) {
return false;
}
return true;
}
bool ValidCubic(const SkDCubic& cubic) {
for (int index = 0; index < 4; ++index) {
if (!ValidPoint(cubic[index])) {
return false;
}
}
return true;
}
bool ValidLine(const SkDLine& line) {
for (int index = 0; index < 2; ++index) {
if (!ValidPoint(line[index])) {
return false;
}
}
return true;
}
bool ValidPoint(const SkDPoint& pt) {
if (SkDoubleIsNaN(pt.fX)) {
return false;
}
return !SkDoubleIsNaN(pt.fY);
}
bool ValidPoints(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
if (SkScalarIsNaN(pts[index].fX)) {
return false;
}
if (SkScalarIsNaN(pts[index].fY)) {
return false;
}
}
return true;
}
bool ValidQuad(const SkDQuad& quad) {
for (int index = 0; index < 3; ++index) {
if (!ValidPoint(quad[index])) {
return false;
}
}
return true;
}
bool ValidVector(const SkDVector& v) {
if (SkDoubleIsNaN(v.fX)) {
return false;
}
return !SkDoubleIsNaN(v.fY);
}
|