1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAutoPixmapStorage.h"
#include "SkBitmap.h"
#include "SkData.h"
#include "SkEndian.h"
#include "SkImageInfo.h"
#include "SkTemplates.h"
#include "SkTextureCompressor.h"
#include "Test.h"
// TODO: Create separate tests for RGB and RGBA data once
// ASTC and ETC1 decompression is implemented.
static bool decompresses_a8(SkTextureCompressor::Format fmt) {
switch (fmt) {
case SkTextureCompressor::kLATC_Format:
case SkTextureCompressor::kR11_EAC_Format:
return true;
default:
return false;
}
}
static bool compresses_a8(SkTextureCompressor::Format fmt) {
switch (fmt) {
case SkTextureCompressor::kLATC_Format:
case SkTextureCompressor::kR11_EAC_Format:
case SkTextureCompressor::kASTC_12x12_Format:
return true;
default:
return false;
}
}
/**
* Make sure that we properly fail when we don't have multiple of four image dimensions.
*/
DEF_TEST(CompressAlphaFailDimensions, reporter) {
static const int kWidth = 17;
static const int kHeight = 17;
// R11_EAC and LATC are both dimensions of 4, so we need to make sure that we
// are violating those assumptions. And if we are, then we're also violating the
// assumptions of ASTC, which is 12x12 since any number not divisible by 4 is
// also not divisible by 12. Our dimensions are prime, so any block dimension
// larger than 1 should fail.
REPORTER_ASSERT(reporter, kWidth % 4 != 0);
REPORTER_ASSERT(reporter, kHeight % 4 != 0);
SkAutoPixmapStorage pixmap;
pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight));
// leaving the pixels uninitialized, as they don't affect the test...
for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) {
const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i);
if (!compresses_a8(fmt)) {
continue;
}
sk_sp<SkData> data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt));
REPORTER_ASSERT(reporter, nullptr == data);
}
}
/**
* Make sure that we properly fail when we don't have the correct bitmap type.
* compressed textures can (currently) only be created from A8 bitmaps.
*/
DEF_TEST(CompressAlphaFailColorType, reporter) {
static const int kWidth = 12;
static const int kHeight = 12;
// ASTC is at most 12x12, and any dimension divisible by 12 is also divisible
// by 4, which is the dimensions of R11_EAC and LATC. In the future, we might
// support additional variants of ASTC, such as 5x6 and 8x8, in which case this would
// need to be updated.
REPORTER_ASSERT(reporter, kWidth % 12 == 0);
REPORTER_ASSERT(reporter, kHeight % 12 == 0);
SkAutoPixmapStorage pixmap;
pixmap.alloc(SkImageInfo::MakeN32Premul(kWidth, kHeight));
// leaving the pixels uninitialized, as they don't affect the test...
for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) {
const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i);
if (!compresses_a8(fmt)) {
continue;
}
sk_sp<SkData> data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt));
REPORTER_ASSERT(reporter, nullptr == data);
}
}
/**
* Make sure that if you compress a texture with alternating black/white pixels, and
* then decompress it, you get what you started with.
*/
DEF_TEST(CompressCheckerboard, reporter) {
static const int kWidth = 48; // We need the number to be divisible by both
static const int kHeight = 48; // 12 (ASTC) and 16 (ARM NEON R11 EAC).
// ASTC is at most 12x12, and any dimension divisible by 12 is also divisible
// by 4, which is the dimensions of R11_EAC and LATC. In the future, we might
// support additional variants of ASTC, such as 5x6 and 8x8, in which case this would
// need to be updated. Additionally, ARM NEON and SSE code paths support up to
// four blocks of R11 EAC at once, so they operate on 16-wide blocks. Hence, the
// valid width and height is going to be the LCM of 12 and 16 which is 4*4*3 = 48
REPORTER_ASSERT(reporter, kWidth % 48 == 0);
REPORTER_ASSERT(reporter, kHeight % 48 == 0);
SkAutoPixmapStorage pixmap;
pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight));
// Populate the pixels
{
uint8_t* pixels = reinterpret_cast<uint8_t*>(pixmap.writable_addr());
REPORTER_ASSERT(reporter, pixels);
if (nullptr == pixels) {
return;
}
for (int y = 0; y < kHeight; ++y) {
for (int x = 0; x < kWidth; ++x) {
if ((x ^ y) & 1) {
pixels[x] = 0xFF;
} else {
pixels[x] = 0;
}
}
pixels += pixmap.rowBytes();
}
}
SkAutoTMalloc<uint8_t> decompMemory(kWidth*kHeight);
uint8_t* decompBuffer = decompMemory.get();
REPORTER_ASSERT(reporter, decompBuffer);
if (nullptr == decompBuffer) {
return;
}
for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) {
const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i);
// Ignore formats for RGBA data, since the decompressed buffer
// won't match the size and contents of the original.
if (!decompresses_a8(fmt) || !compresses_a8(fmt)) {
continue;
}
sk_sp<SkData> data(SkTextureCompressor::CompressBitmapToFormat(pixmap, fmt));
REPORTER_ASSERT(reporter, data);
if (nullptr == data) {
continue;
}
bool decompResult =
SkTextureCompressor::DecompressBufferFromFormat(
decompBuffer, kWidth,
data->bytes(),
kWidth, kHeight, fmt);
REPORTER_ASSERT(reporter, decompResult);
const uint8_t* pixels = reinterpret_cast<const uint8_t*>(pixmap.addr());
REPORTER_ASSERT(reporter, pixels);
if (nullptr == pixels) {
continue;
}
for (int y = 0; y < kHeight; ++y) {
for (int x = 0; x < kWidth; ++x) {
bool ok = pixels[y*pixmap.rowBytes() + x] == decompBuffer[y*kWidth + x];
REPORTER_ASSERT(reporter, ok);
}
}
}
}
/**
* Make sure that if we pass in a solid color bitmap that we get the appropriate results
*/
DEF_TEST(CompressLATC, reporter) {
const SkTextureCompressor::Format kLATCFormat = SkTextureCompressor::kLATC_Format;
static const int kLATCEncodedBlockSize = 8;
static const int kWidth = 8;
static const int kHeight = 8;
SkAutoPixmapStorage pixmap;
pixmap.alloc(SkImageInfo::MakeA8(kWidth, kHeight));
int latcDimX, latcDimY;
SkTextureCompressor::GetBlockDimensions(kLATCFormat, &latcDimX, &latcDimY);
REPORTER_ASSERT(reporter, kWidth % latcDimX == 0);
REPORTER_ASSERT(reporter, kHeight % latcDimY == 0);
const size_t kSizeToBe =
SkTextureCompressor::GetCompressedDataSize(kLATCFormat, kWidth, kHeight);
REPORTER_ASSERT(reporter, kSizeToBe == ((kWidth*kHeight*kLATCEncodedBlockSize)/16));
REPORTER_ASSERT(reporter, (kSizeToBe % kLATCEncodedBlockSize) == 0);
for (int lum = 0; lum < 256; ++lum) {
uint8_t* pixels = reinterpret_cast<uint8_t*>(pixmap.writable_addr());
for (int i = 0; i < kWidth*kHeight; ++i) {
pixels[i] = lum;
}
sk_sp<SkData> latcData(
SkTextureCompressor::CompressBitmapToFormat(pixmap, kLATCFormat));
REPORTER_ASSERT(reporter, latcData);
if (nullptr == latcData) {
continue;
}
REPORTER_ASSERT(reporter, kSizeToBe == latcData->size());
// Make sure that it all matches a given block encoding. Since we have
// COMPRESS_LATC_FAST defined in SkTextureCompressor_LATC.cpp, we are using
// an approximation scheme that optimizes for speed against coverage maps.
// That means that each palette in the encoded block is exactly the same,
// and that the three bits saved per pixel are computed from the top three
// bits of the luminance value.
const uint64_t kIndexEncodingMap[8] = { 1, 7, 6, 5, 4, 3, 2, 0 };
// Quantize to three bits in the same way that we do our LATC compression:
// 1. Divide by two
// 2. Add 9
// 3. Divide by two
// 4. Approximate division by three twice
uint32_t quant = static_cast<uint32_t>(lum);
quant >>= 1; // 1
quant += 9; // 2
quant >>= 1; // 3
uint32_t a, b, c, ar, br, cr;
// First division by three
a = quant >> 2;
ar = (quant & 0x3) << 4;
b = quant >> 4;
br = (quant & 0xF) << 2;
c = quant >> 6;
cr = (quant & 0x3F);
quant = (a + b + c) + ((ar + br + cr) >> 6);
// Second division by three
a = quant >> 2;
ar = (quant & 0x3) << 4;
b = quant >> 4;
br = (quant & 0xF) << 2;
c = quant >> 6;
cr = (quant & 0x3F);
quant = (a + b + c) + ((ar + br + cr) >> 6);
const uint64_t kIndex = kIndexEncodingMap[quant];
const uint64_t kConstColorEncoding =
SkEndian_SwapLE64(
255 |
(kIndex << 16) | (kIndex << 19) | (kIndex << 22) | (kIndex << 25) |
(kIndex << 28) | (kIndex << 31) | (kIndex << 34) | (kIndex << 37) |
(kIndex << 40) | (kIndex << 43) | (kIndex << 46) | (kIndex << 49) |
(kIndex << 52) | (kIndex << 55) | (kIndex << 58) | (kIndex << 61));
const uint64_t* blockPtr = reinterpret_cast<const uint64_t*>(latcData->data());
for (size_t i = 0; i < (kSizeToBe/8); ++i) {
REPORTER_ASSERT(reporter, blockPtr[i] == kConstColorEncoding);
}
}
}
|