1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*
* Copyright 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/api/quicdatachannel.h"
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "webrtc/base/bind.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/scoped_ref_ptr.h"
#include "webrtc/p2p/base/faketransportcontroller.h"
#include "webrtc/p2p/quic/quictransportchannel.h"
#include "webrtc/p2p/quic/reliablequicstream.h"
using cricket::FakeTransportChannel;
using cricket::QuicTransportChannel;
using cricket::ReliableQuicStream;
using webrtc::DataBuffer;
using webrtc::DataChannelObserver;
using webrtc::DataChannelInit;
using webrtc::QuicDataChannel;
namespace {
// Timeout for asynchronous operations.
static const int kTimeoutMs = 1000; // milliseconds
// Small messages that can be sent within a single QUIC packet.
static const std::string kSmallMessage1 = "Hello, world!";
static const std::string kSmallMessage2 = "WebRTC";
static const std::string kSmallMessage3 = "1";
static const std::string kSmallMessage4 = "abcdefghijklmnopqrstuvwxyz";
static const DataBuffer kSmallBuffer1(kSmallMessage1);
static const DataBuffer kSmallBuffer2(kSmallMessage2);
static const DataBuffer kSmallBuffer3(kSmallMessage3);
static const DataBuffer kSmallBuffer4(kSmallMessage4);
// Large messages (> 1350 bytes) that exceed the max size of a QUIC packet.
// These are < 16 KB so they don't exceed the QUIC stream flow control limit.
static const std::string kLargeMessage1 = std::string("a", 2000);
static const std::string kLargeMessage2 = std::string("a", 4000);
static const std::string kLargeMessage3 = std::string("a", 8000);
static const std::string kLargeMessage4 = std::string("a", 12000);
static const DataBuffer kLargeBuffer1(kLargeMessage1);
static const DataBuffer kLargeBuffer2(kLargeMessage2);
static const DataBuffer kLargeBuffer3(kLargeMessage3);
static const DataBuffer kLargeBuffer4(kLargeMessage4);
// Oversized message (> 16 KB) that violates the QUIC stream flow control limit.
static const std::string kOversizedMessage = std::string("a", 20000);
static const DataBuffer kOversizedBuffer(kOversizedMessage);
// Creates a fingerprint from a certificate.
static rtc::SSLFingerprint* CreateFingerprint(rtc::RTCCertificate* cert) {
std::string digest_algorithm;
cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm);
std::unique_ptr<rtc::SSLFingerprint> fingerprint(
rtc::SSLFingerprint::Create(digest_algorithm, cert->identity()));
return fingerprint.release();
}
// FakeObserver receives messages from the QuicDataChannel.
class FakeObserver : public DataChannelObserver {
public:
FakeObserver()
: on_state_change_count_(0), on_buffered_amount_change_count_(0) {}
// DataChannelObserver overrides.
void OnStateChange() override { ++on_state_change_count_; }
void OnBufferedAmountChange(uint64_t previous_amount) override {
++on_buffered_amount_change_count_;
}
void OnMessage(const webrtc::DataBuffer& buffer) override {
messages_.push_back(std::string(buffer.data.data<char>(), buffer.size()));
}
const std::vector<std::string>& messages() const { return messages_; }
size_t messages_received() const { return messages_.size(); }
size_t on_state_change_count() const { return on_state_change_count_; }
size_t on_buffered_amount_change_count() const {
return on_buffered_amount_change_count_;
}
private:
std::vector<std::string> messages_;
size_t on_state_change_count_;
size_t on_buffered_amount_change_count_;
};
// FakeQuicDataTransport simulates QuicDataTransport by dispatching QUIC
// stream messages to data channels and encoding/decoding messages.
class FakeQuicDataTransport : public sigslot::has_slots<> {
public:
FakeQuicDataTransport() {}
void ConnectToTransportChannel(QuicTransportChannel* quic_transport_channel) {
quic_transport_channel->SignalIncomingStream.connect(
this, &FakeQuicDataTransport::OnIncomingStream);
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannel(
int id,
const std::string& label,
const std::string& protocol) {
DataChannelInit config;
config.id = id;
config.protocol = protocol;
rtc::scoped_refptr<QuicDataChannel> data_channel(
new QuicDataChannel(rtc::Thread::Current(), rtc::Thread::Current(),
rtc::Thread::Current(), label, config));
data_channel_by_id_[id] = data_channel;
return data_channel;
}
private:
void OnIncomingStream(cricket::ReliableQuicStream* stream) {
incoming_stream_ = stream;
incoming_stream_->SignalDataReceived.connect(
this, &FakeQuicDataTransport::OnDataReceived);
}
void OnDataReceived(net::QuicStreamId id, const char* data, size_t len) {
ASSERT_EQ(incoming_stream_->id(), id);
incoming_stream_->SignalDataReceived.disconnect(this);
// Retrieve the data channel ID and message ID.
int data_channel_id;
uint64_t message_id;
size_t bytes_read;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(data, len, &data_channel_id,
&message_id, &bytes_read));
data += bytes_read;
len -= bytes_read;
// Dispatch the message to the matching QuicDataChannel.
const auto& kv = data_channel_by_id_.find(data_channel_id);
ASSERT_NE(kv, data_channel_by_id_.end());
QuicDataChannel* data_channel = kv->second;
QuicDataChannel::Message message;
message.id = message_id;
message.buffer = rtc::CopyOnWriteBuffer(data, len);
message.stream = incoming_stream_;
data_channel->OnIncomingMessage(std::move(message));
incoming_stream_ = nullptr;
}
// Map of data channel ID => QuicDataChannel.
std::map<int, rtc::scoped_refptr<QuicDataChannel>> data_channel_by_id_;
// Last incoming QUIC stream which has arrived.
cricket::ReliableQuicStream* incoming_stream_ = nullptr;
};
// A peer who creates a QuicDataChannel to transfer data, and simulates network
// connectivity with a fake ICE channel wrapped by the QUIC transport channel.
class QuicDataChannelPeer {
public:
QuicDataChannelPeer()
: ice_transport_channel_(new FakeTransportChannel("data", 0)),
quic_transport_channel_(ice_transport_channel_) {
ice_transport_channel_->SetAsync(true);
fake_quic_data_transport_.ConnectToTransportChannel(
&quic_transport_channel_);
}
void GenerateCertificateAndFingerprint() {
rtc::scoped_refptr<rtc::RTCCertificate> local_cert =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate("cert_name", rtc::KT_DEFAULT)));
quic_transport_channel_.SetLocalCertificate(local_cert);
local_fingerprint_.reset(CreateFingerprint(local_cert.get()));
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannelWithTransportChannel(
int id,
const std::string& label,
const std::string& protocol) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
fake_quic_data_transport_.CreateDataChannel(id, label, protocol);
data_channel->SetTransportChannel(&quic_transport_channel_);
return data_channel;
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannelWithoutTransportChannel(
int id,
const std::string& label,
const std::string& protocol) {
return fake_quic_data_transport_.CreateDataChannel(id, label, protocol);
}
// Connects |ice_transport_channel_| to that of the other peer.
void Connect(QuicDataChannelPeer* other_peer) {
ice_transport_channel_->SetDestination(other_peer->ice_transport_channel_);
}
std::unique_ptr<rtc::SSLFingerprint>& local_fingerprint() {
return local_fingerprint_;
}
QuicTransportChannel* quic_transport_channel() {
return &quic_transport_channel_;
}
FakeTransportChannel* ice_transport_channel() {
return ice_transport_channel_;
}
private:
FakeTransportChannel* ice_transport_channel_;
QuicTransportChannel quic_transport_channel_;
std::unique_ptr<rtc::SSLFingerprint> local_fingerprint_;
FakeQuicDataTransport fake_quic_data_transport_;
};
class QuicDataChannelTest : public testing::Test {
public:
QuicDataChannelTest() {}
// Connect the QuicTransportChannels and complete the crypto handshake.
void ConnectTransportChannels() {
SetCryptoParameters();
peer1_.Connect(&peer2_);
ASSERT_TRUE_WAIT(peer1_.quic_transport_channel()->writable() &&
peer2_.quic_transport_channel()->writable(),
kTimeoutMs);
}
// Sets crypto parameters required for the QUIC handshake.
void SetCryptoParameters() {
peer1_.GenerateCertificateAndFingerprint();
peer2_.GenerateCertificateAndFingerprint();
peer1_.quic_transport_channel()->SetSslRole(rtc::SSL_CLIENT);
peer2_.quic_transport_channel()->SetSslRole(rtc::SSL_SERVER);
std::unique_ptr<rtc::SSLFingerprint>& peer1_fingerprint =
peer1_.local_fingerprint();
std::unique_ptr<rtc::SSLFingerprint>& peer2_fingerprint =
peer2_.local_fingerprint();
peer1_.quic_transport_channel()->SetRemoteFingerprint(
peer2_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer2_fingerprint->digest.data()),
peer2_fingerprint->digest.size());
peer2_.quic_transport_channel()->SetRemoteFingerprint(
peer1_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer1_fingerprint->digest.data()),
peer1_fingerprint->digest.size());
}
protected:
QuicDataChannelPeer peer1_;
QuicDataChannelPeer peer2_;
};
// Tests that a QuicDataChannel transitions from connecting to open when
// the QuicTransportChannel becomes writable for the first time.
TEST_F(QuicDataChannelTest, DataChannelOpensWhenTransportChannelConnects) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
ConnectTransportChannels();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel->state(),
kTimeoutMs);
}
// Tests that a QuicDataChannel transitions from connecting to open when
// SetTransportChannel is called with a QuicTransportChannel that is already
// writable.
TEST_F(QuicDataChannelTest, DataChannelOpensWhenTransportChannelWritable) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithoutTransportChannel(4, "label", "protocol");
ConnectTransportChannels();
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->SetTransportChannel(peer1_.quic_transport_channel());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
}
// Tests that the QuicDataChannel transfers messages small enough to fit into a
// single QUIC stream frame.
TEST_F(QuicDataChannelTest, TransferSmallMessage) {
ConnectTransportChannels();
int data_channel_id = 2;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer1));
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage1, peer2_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kSmallBuffer2));
ASSERT_EQ_WAIT(1, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage2, peer1_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kSmallBuffer3));
ASSERT_EQ_WAIT(2, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage3, peer1_observer.messages()[1]);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer4));
ASSERT_EQ_WAIT(2, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage4, peer2_observer.messages()[1]);
}
// Tests that QuicDataChannel transfers messages large enough to fit into
// multiple QUIC stream frames, which don't violate the QUIC flow control limit.
// These require buffering by the QuicDataChannel.
TEST_F(QuicDataChannelTest, TransferLargeMessage) {
ConnectTransportChannels();
int data_channel_id = 347;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kLargeBuffer1));
ASSERT_TRUE_WAIT(peer2_observer.messages_received() == 1, kTimeoutMs);
EXPECT_EQ(kLargeMessage1, peer2_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kLargeBuffer2));
ASSERT_EQ_WAIT(1, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage2, peer1_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kLargeBuffer3));
ASSERT_EQ_WAIT(2, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage3, peer1_observer.messages()[1]);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kLargeBuffer4));
ASSERT_EQ_WAIT(2, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage4, peer2_observer.messages()[1]);
}
// Tests that when a message size exceeds the flow control limit (> 16KB), the
// QuicDataChannel can queue the data and send it after receiving window update
// frames from the remote peer.
TEST_F(QuicDataChannelTest, TransferOversizedMessage) {
ConnectTransportChannels();
int data_channel_id = 189;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
EXPECT_TRUE(peer1_data_channel->Send(kOversizedBuffer));
EXPECT_EQ(1, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ_WAIT(1, peer2_data_channel->GetNumIncomingStreams(), kTimeoutMs);
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kOversizedMessage, peer2_observer.messages()[0]);
EXPECT_EQ(0, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ(0, peer2_data_channel->GetNumIncomingStreams());
}
// Tests that empty messages can be sent.
TEST_F(QuicDataChannelTest, TransferEmptyMessage) {
ConnectTransportChannels();
int data_channel_id = 69;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
EXPECT_TRUE(peer1_data_channel->Send(DataBuffer("")));
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ("", peer2_observer.messages()[0]);
}
// Tests that when the QuicDataChannel is open and sends a message while the
// QuicTransportChannel is unwritable, it gets buffered then received once the
// QuicTransportChannel becomes writable again.
TEST_F(QuicDataChannelTest, MessagesReceivedWhenTransportChannelReconnects) {
ConnectTransportChannels();
int data_channel_id = 401;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
// Verify that sent data is buffered.
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer1));
EXPECT_EQ(1, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer2));
EXPECT_EQ(2, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer3));
EXPECT_EQ(3, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer4));
EXPECT_EQ(4, peer1_data_channel->GetNumWriteBlockedStreams());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
ASSERT_EQ_WAIT(4, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(0, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ(0, peer2_data_channel->GetNumIncomingStreams());
}
// Tests that the QuicDataChannel does not send before it is open.
TEST_F(QuicDataChannelTest, TransferMessageBeforeChannelOpens) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(6, "label", "protocol");
ASSERT_TRUE(data_channel->state() ==
webrtc::DataChannelInterface::kConnecting);
EXPECT_FALSE(data_channel->Send(kSmallBuffer1));
}
// Tests that the QuicDataChannel does not send after it is closed.
TEST_F(QuicDataChannelTest, TransferDataAfterChannelClosed) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(42, "label", "protocol");
data_channel->Close();
ASSERT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
EXPECT_FALSE(data_channel->Send(kSmallBuffer1));
}
// Tests that QuicDataChannel state changes fire OnStateChanged() for the
// observer, with the correct data channel states, when the data channel
// transitions from kConnecting => kOpen => kClosing => kClosed.
TEST_F(QuicDataChannelTest, OnStateChangedFired) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(7, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
ConnectTransportChannels();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel->state(),
kTimeoutMs);
EXPECT_EQ(1, observer.on_state_change_count());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
// 2 state changes due to kClosing and kClosed.
EXPECT_EQ(3, observer.on_state_change_count());
}
// Tests that a QuicTransportChannel can be closed without being opened when it
// is connected to a transprot chanenl.
TEST_F(QuicDataChannelTest, NeverOpenedWithTransportChannel) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(7, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that a QuicTransportChannel can be closed without being opened or
// connected to a transport channel.
TEST_F(QuicDataChannelTest, NeverOpenedWithoutTransportChannel) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithoutTransportChannel(7, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that the QuicDataChannel is closed when the QUIC connection closes.
TEST_F(QuicDataChannelTest, ClosedOnTransportError) {
ConnectTransportChannels();
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(1, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
ReliableQuicStream* stream =
peer1_.quic_transport_channel()->CreateQuicStream();
ASSERT_NE(nullptr, stream);
stream->CloseConnectionWithDetails(net::QuicErrorCode::QUIC_NO_ERROR,
"Closing QUIC for testing");
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that an already closed QuicDataChannel does not fire onStateChange and
// remains closed.
TEST_F(QuicDataChannelTest, DoesNotChangeStateWhenClosed) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
// OnStateChange called for kClosing and kClosed.
EXPECT_EQ(2, observer.on_state_change_count());
// Call Close() again to verify that the state cannot be kClosing.
data_channel->Close();
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
ConnectTransportChannels();
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
}
// Tests that when the QuicDataChannel is open and the QuicTransportChannel
// transitions between writable and unwritable, it does not fire onStateChange
// and remains open.
TEST_F(QuicDataChannelTest, DoesNotChangeStateWhenTransportChannelReconnects) {
ConnectTransportChannels();
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
}
// Tests that SetTransportChannel returns false when setting a NULL transport
// channel or a transport channel that is not equivalent to the one already set.
TEST_F(QuicDataChannelTest, SetTransportChannelReturnValue) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
EXPECT_FALSE(data_channel->SetTransportChannel(nullptr));
QuicTransportChannel* transport_channel = peer1_.quic_transport_channel();
EXPECT_TRUE(data_channel->SetTransportChannel(transport_channel));
EXPECT_TRUE(data_channel->SetTransportChannel(transport_channel));
QuicTransportChannel* other_transport_channel =
peer2_.quic_transport_channel();
EXPECT_FALSE(data_channel->SetTransportChannel(other_transport_channel));
}
// Tests that the QUIC message header is encoded with the correct number of
// bytes and is properly decoded.
TEST_F(QuicDataChannelTest, EncodeParseQuicDataMessageHeader) {
int data_channel_id1 = 127; // 1 byte
uint64_t message_id1 = 0; // 1 byte
rtc::CopyOnWriteBuffer header1;
webrtc::WriteQuicDataChannelMessageHeader(data_channel_id1, message_id1,
&header1);
EXPECT_EQ(2u, header1.size());
int decoded_data_channel_id1;
uint64_t decoded_message_id1;
size_t bytes_read1;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(
header1.data<char>(), header1.size(), &decoded_data_channel_id1,
&decoded_message_id1, &bytes_read1));
EXPECT_EQ(data_channel_id1, decoded_data_channel_id1);
EXPECT_EQ(message_id1, decoded_message_id1);
EXPECT_EQ(2u, bytes_read1);
int data_channel_id2 = 4178; // 2 bytes
uint64_t message_id2 = 1324921792003; // 6 bytes
rtc::CopyOnWriteBuffer header2;
webrtc::WriteQuicDataChannelMessageHeader(data_channel_id2, message_id2,
&header2);
EXPECT_EQ(8u, header2.size());
int decoded_data_channel_id2;
uint64_t decoded_message_id2;
size_t bytes_read2;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(
header2.data<char>(), header2.size(), &decoded_data_channel_id2,
&decoded_message_id2, &bytes_read2));
EXPECT_EQ(data_channel_id2, decoded_data_channel_id2);
EXPECT_EQ(message_id2, decoded_message_id2);
EXPECT_EQ(8u, bytes_read2);
}
} // namespace
|