File: intelligibility_enhancer.cc

package info (click to toggle)
chromium-browser 57.0.2987.98-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 2,637,852 kB
  • ctags: 2,544,394
  • sloc: cpp: 12,815,961; ansic: 3,676,222; python: 1,147,112; asm: 526,608; java: 523,212; xml: 286,794; perl: 92,654; sh: 86,408; objc: 73,271; makefile: 27,698; cs: 18,487; yacc: 13,031; tcl: 12,957; pascal: 4,875; ml: 4,716; lex: 3,904; sql: 3,862; ruby: 1,982; lisp: 1,508; php: 1,368; exp: 404; awk: 325; csh: 117; jsp: 39; sed: 37
file content (390 lines) | stat: -rw-r--r-- 14,882 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"

#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <limits>
#include <numeric>

#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/window_generator.h"

namespace webrtc {

namespace {

const size_t kErbResolution = 2;
const int kWindowSizeMs = 16;
const int kChunkSizeMs = 10;  // Size provided by APM.
const float kClipFreqKhz = 0.2f;
const float kKbdAlpha = 1.5f;
const float kLambdaBot = -1.f;      // Extreme values in bisection
const float kLambdaTop = -1e-5f;      // search for lamda.
const float kVoiceProbabilityThreshold = 0.5f;
// Number of chunks after voice activity which is still considered speech.
const size_t kSpeechOffsetDelay = 10;
const float kDecayRate = 0.995f;              // Power estimation decay rate.
const float kMaxRelativeGainChange = 0.005f;
const float kRho = 0.0004f;  // Default production and interpretation SNR.
const float kPowerNormalizationFactor = 1.f / (1 << 30);
const float kMaxActiveSNR = 128.f;  // 21dB
const float kMinInactiveSNR = 32.f;  // 15dB
const size_t kGainUpdatePeriod = 10u;

// Returns dot product of vectors |a| and |b| with size |length|.
float DotProduct(const float* a, const float* b, size_t length) {
  float ret = 0.f;
  for (size_t i = 0; i < length; ++i) {
    ret += a[i] * b[i];
  }
  return ret;
}

// Computes the power across ERB bands from the power spectral density |pow|.
// Stores it in |result|.
void MapToErbBands(const float* pow,
                   const std::vector<std::vector<float>>& filter_bank,
                   float* result) {
  for (size_t i = 0; i < filter_bank.size(); ++i) {
    RTC_DCHECK_GT(filter_bank[i].size(), 0);
    result[i] = kPowerNormalizationFactor *
                DotProduct(filter_bank[i].data(), pow, filter_bank[i].size());
  }
}

}  // namespace

IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz,
                                                 size_t num_render_channels,
                                                 size_t num_bands,
                                                 size_t num_noise_bins)
    : freqs_(RealFourier::ComplexLength(
          RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
      num_noise_bins_(num_noise_bins),
      chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)),
      bank_size_(GetBankSize(sample_rate_hz, kErbResolution)),
      sample_rate_hz_(sample_rate_hz),
      num_render_channels_(num_render_channels),
      clear_power_estimator_(freqs_, kDecayRate),
      noise_power_estimator_(num_noise_bins, kDecayRate),
      filtered_clear_pow_(bank_size_, 0.f),
      filtered_noise_pow_(num_noise_bins, 0.f),
      center_freqs_(bank_size_),
      capture_filter_bank_(CreateErbBank(num_noise_bins)),
      render_filter_bank_(CreateErbBank(freqs_)),
      gains_eq_(bank_size_),
      gain_applier_(freqs_, kMaxRelativeGainChange),
      audio_s16_(chunk_length_),
      chunks_since_voice_(kSpeechOffsetDelay),
      is_speech_(false),
      snr_(kMaxActiveSNR),
      is_active_(false),
      num_chunks_(0u),
      num_active_chunks_(0u),
      noise_estimation_buffer_(num_noise_bins),
      noise_estimation_queue_(kMaxNumNoiseEstimatesToBuffer,
                              std::vector<float>(num_noise_bins),
                              RenderQueueItemVerifier<float>(num_noise_bins)) {
  RTC_DCHECK_LE(kRho, 1.f);

  const size_t erb_index = static_cast<size_t>(
      ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) +
            43.f));
  start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution);

  size_t window_size = static_cast<size_t>(1) << RealFourier::FftOrder(freqs_);
  std::vector<float> kbd_window(window_size);
  WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size,
                                       kbd_window.data());
  render_mangler_.reset(new LappedTransform(
      num_render_channels_, num_render_channels_, chunk_length_,
      kbd_window.data(), window_size, window_size / 2, this));

  const size_t initial_delay = render_mangler_->initial_delay();
  for (size_t i = 0u; i < num_bands - 1; ++i) {
    high_bands_buffers_.push_back(std::unique_ptr<intelligibility::DelayBuffer>(
        new intelligibility::DelayBuffer(initial_delay, num_render_channels_)));
  }
}

IntelligibilityEnhancer::~IntelligibilityEnhancer() {
  // Don't rely on this log, since the destructor isn't called when the
  // app/tab is killed.
  if (num_chunks_ > 0) {
    LOG(LS_INFO) << "Intelligibility Enhancer was active for "
                 << 100.f * static_cast<float>(num_active_chunks_) / num_chunks_
                 << "% of the call.";
  } else {
    LOG(LS_INFO) << "Intelligibility Enhancer processed no chunk.";
  }
}

void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
    std::vector<float> noise, float gain) {
  RTC_DCHECK_EQ(noise.size(), num_noise_bins_);
  for (auto& bin : noise) {
    bin *= gain;
  }
  // Disregarding return value since buffer overflow is acceptable, because it
  // is not critical to get each noise estimate.
  if (noise_estimation_queue_.Insert(&noise)) {
  };
}

void IntelligibilityEnhancer::ProcessRenderAudio(AudioBuffer* audio) {
  RTC_DCHECK_EQ(num_render_channels_, audio->num_channels());
  while (noise_estimation_queue_.Remove(&noise_estimation_buffer_)) {
    noise_power_estimator_.Step(noise_estimation_buffer_.data());
  }
  float* const* low_band = audio->split_channels_f(kBand0To8kHz);
  is_speech_ = IsSpeech(low_band[0]);
  render_mangler_->ProcessChunk(low_band, low_band);
  DelayHighBands(audio);
}

void IntelligibilityEnhancer::ProcessAudioBlock(
    const std::complex<float>* const* in_block,
    size_t in_channels,
    size_t frames,
    size_t /* out_channels */,
    std::complex<float>* const* out_block) {
  RTC_DCHECK_EQ(freqs_, frames);
  if (is_speech_) {
    clear_power_estimator_.Step(in_block[0]);
  }
  SnrBasedEffectActivation();
  ++num_chunks_;
  if (is_active_) {
    ++num_active_chunks_;
    if (num_chunks_ % kGainUpdatePeriod == 0) {
      MapToErbBands(clear_power_estimator_.power().data(), render_filter_bank_,
                    filtered_clear_pow_.data());
      MapToErbBands(noise_power_estimator_.power().data(), capture_filter_bank_,
                    filtered_noise_pow_.data());
      SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.data());
      const float power_target = std::accumulate(
          filtered_clear_pow_.data(),
          filtered_clear_pow_.data() + bank_size_,
          0.f);
      const float power_top =
          DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
      SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.data());
      const float power_bot =
          DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
      if (power_target >= power_bot && power_target <= power_top) {
        SolveForLambda(power_target);
        UpdateErbGains();
      }  // Else experiencing power underflow, so do nothing.
    }
  }
  for (size_t i = 0; i < in_channels; ++i) {
    gain_applier_.Apply(in_block[i], out_block[i]);
  }
}

void IntelligibilityEnhancer::SnrBasedEffectActivation() {
  const float* clear_psd = clear_power_estimator_.power().data();
  const float* noise_psd = noise_power_estimator_.power().data();
  const float clear_power =
      std::accumulate(clear_psd, clear_psd + freqs_, 0.f);
  const float noise_power =
      std::accumulate(noise_psd, noise_psd + freqs_, 0.f);
  snr_ = kDecayRate * snr_ + (1.f - kDecayRate) * clear_power /
      (noise_power + std::numeric_limits<float>::epsilon());
  if (is_active_) {
    if (snr_ > kMaxActiveSNR) {
      LOG(LS_INFO) << "Intelligibility Enhancer was deactivated at chunk "
                   << num_chunks_;
      is_active_ = false;
      // Set the target gains to unity.
      float* gains = gain_applier_.target();
      for (size_t i = 0; i < freqs_; ++i) {
        gains[i] = 1.f;
      }
    }
  } else {
    if (snr_ < kMinInactiveSNR) {
      LOG(LS_INFO) << "Intelligibility Enhancer was activated at chunk "
                   << num_chunks_;
      is_active_ = true;
    }
  }
}

void IntelligibilityEnhancer::SolveForLambda(float power_target) {
  const float kConvergeThresh = 0.001f;  // TODO(ekmeyerson): Find best values
  const int kMaxIters = 100;             // for these, based on experiments.

  const float reciprocal_power_target =
      1.f / (power_target + std::numeric_limits<float>::epsilon());
  float lambda_bot = kLambdaBot;
  float lambda_top = kLambdaTop;
  float power_ratio = 2.f;  // Ratio of achieved power to target power.
  int iters = 0;
  while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) {
    const float lambda = (lambda_bot + lambda_top) / 2.f;
    SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.data());
    const float power =
        DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
    if (power < power_target) {
      lambda_bot = lambda;
    } else {
      lambda_top = lambda;
    }
    power_ratio = std::fabs(power * reciprocal_power_target);
    ++iters;
  }
}

void IntelligibilityEnhancer::UpdateErbGains() {
  // (ERB gain) = filterbank' * (freq gain)
  float* gains = gain_applier_.target();
  for (size_t i = 0; i < freqs_; ++i) {
    gains[i] = 0.f;
    for (size_t j = 0; j < bank_size_; ++j) {
      gains[i] += render_filter_bank_[j][i] * gains_eq_[j];
    }
  }
}

size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
                                            size_t erb_resolution) {
  float freq_limit = sample_rate / 2000.f;
  size_t erb_scale = static_cast<size_t>(ceilf(
      11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f));
  return erb_scale * erb_resolution;
}

std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
    size_t num_freqs) {
  std::vector<std::vector<float>> filter_bank(bank_size_);
  size_t lf = 1, rf = 4;

  for (size_t i = 0; i < bank_size_; ++i) {
    float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution));
    center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
    center_freqs_[i] -= 14678.49f;
  }
  float last_center_freq = center_freqs_[bank_size_ - 1];
  for (size_t i = 0; i < bank_size_; ++i) {
    center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
  }

  for (size_t i = 0; i < bank_size_; ++i) {
    filter_bank[i].resize(num_freqs);
  }

  for (size_t i = 1; i <= bank_size_; ++i) {
    static const size_t kOne = 1;  // Avoids repeated static_cast<>s below.
    size_t lll =
        static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] *
                                  num_freqs / (0.5f * sample_rate_hz_)));
    size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] *
                                   num_freqs / (0.5f * sample_rate_hz_)));
    lll = std::min(num_freqs, std::max(lll, kOne)) - 1;
    ll = std::min(num_freqs, std::max(ll, kOne)) - 1;

    size_t rrr = static_cast<size_t>(
        round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
              (0.5f * sample_rate_hz_)));
    size_t rr = static_cast<size_t>(
        round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
              (0.5f * sample_rate_hz_)));
    rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1;
    rr = std::min(num_freqs, std::max(rr, kOne)) - 1;

    float step = ll == lll ? 0.f : 1.f / (ll - lll);
    float element = 0.f;
    for (size_t j = lll; j <= ll; ++j) {
      filter_bank[i - 1][j] = element;
      element += step;
    }
    step = rr == rrr ? 0.f : 1.f / (rrr - rr);
    element = 1.f;
    for (size_t j = rr; j <= rrr; ++j) {
      filter_bank[i - 1][j] = element;
      element -= step;
    }
    for (size_t j = ll; j <= rr; ++j) {
      filter_bank[i - 1][j] = 1.f;
    }
  }

  for (size_t i = 0; i < num_freqs; ++i) {
    float sum = 0.f;
    for (size_t j = 0; j < bank_size_; ++j) {
      sum += filter_bank[j][i];
    }
    for (size_t j = 0; j < bank_size_; ++j) {
      filter_bank[j][i] /= sum;
    }
  }
  return filter_bank;
}

void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
                                                       size_t start_freq,
                                                       float* sols) {
  const float kMinPower = 1e-5f;

  const float* pow_x0 = filtered_clear_pow_.data();
  const float* pow_n0 = filtered_noise_pow_.data();

  for (size_t n = 0; n < start_freq; ++n) {
    sols[n] = 1.f;
  }

  // Analytic solution for optimal gains. See paper for derivation.
  for (size_t n = start_freq; n < bank_size_; ++n) {
    if (pow_x0[n] < kMinPower || pow_n0[n] < kMinPower) {
      sols[n] = 1.f;
    } else {
      const float gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] +
                           lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
      const float beta0 =
          lambda * pow_x0[n] * (2.f - kRho) * pow_x0[n] * pow_n0[n];
      const float alpha0 =
          lambda * pow_x0[n] * (1.f - kRho) * pow_x0[n] * pow_x0[n];
      RTC_DCHECK_LT(alpha0, 0.f);
      // The quadratic equation should always have real roots, but to guard
      // against numerical errors we limit it to a minimum of zero.
      sols[n] = std::max(
          0.f, (-beta0 - std::sqrt(std::max(
                             0.f, beta0 * beta0 - 4.f * alpha0 * gamma0))) /
                   (2.f * alpha0));
    }
  }
}

bool IntelligibilityEnhancer::IsSpeech(const float* audio) {
  FloatToS16(audio, chunk_length_, audio_s16_.data());
  vad_.ProcessChunk(audio_s16_.data(), chunk_length_, sample_rate_hz_);
  if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) {
    chunks_since_voice_ = 0;
  } else if (chunks_since_voice_ < kSpeechOffsetDelay) {
    ++chunks_since_voice_;
  }
  return chunks_since_voice_ < kSpeechOffsetDelay;
}

void IntelligibilityEnhancer::DelayHighBands(AudioBuffer* audio) {
  RTC_DCHECK_EQ(audio->num_bands(), high_bands_buffers_.size() + 1);
  for (size_t i = 0u; i < high_bands_buffers_.size(); ++i) {
    Band band = static_cast<Band>(i + 1);
    high_bands_buffers_[i]->Delay(audio->split_channels_f(band), chunk_length_);
  }
}

}  // namespace webrtc