1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#include <cmath>
#include <ios>
#include <limits>
#include <ostream>
#include <sstream>
#include "base/logging.h"
#include "base/macros.h"
#include "base/no_destructor.h"
#include "base/strings/stringprintf.h"
#include <nspr/prtime.h>
#include "base/time/time_override.h"
#include "build/build_config.h"
namespace base {
namespace internal {
TimeNowFunction g_time_now_function = &subtle::TimeNowIgnoringOverride;
TimeNowFunction g_time_now_from_system_time_function =
&subtle::TimeNowFromSystemTimeIgnoringOverride;
TimeTicksNowFunction g_time_ticks_now_function =
&subtle::TimeTicksNowIgnoringOverride;
ThreadTicksNowFunction g_thread_ticks_now_function =
&subtle::ThreadTicksNowIgnoringOverride;
} // namespace internal
// TimeDelta ------------------------------------------------------------------
int TimeDelta::InDays() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InDaysFloored() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
int result = delta_ / Time::kMicrosecondsPerDay;
int64_t remainder = delta_ - (result * Time::kMicrosecondsPerDay);
if (remainder < 0) {
--result; // Use floor(), not trunc() rounding behavior.
}
return result;
}
int TimeDelta::InHours() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64_t TimeDelta::InSeconds() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMilliseconds() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMillisecondsRoundedUp() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
int64_t remainder = delta_ - (result * Time::kMicrosecondsPerMillisecond);
if (remainder > 0) {
++result; // Use ceil(), not trunc() rounding behavior.
}
return result;
}
int64_t TimeDelta::InMicroseconds() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_;
}
double TimeDelta::InMicrosecondsF() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_);
}
int64_t TimeDelta::InNanoseconds() const {
if (is_max()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ * Time::kNanosecondsPerMicrosecond;
}
namespace time_internal {
int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
CheckedNumeric<int64_t> rv(delta.delta_);
rv += value;
if (rv.IsValid())
return rv.ValueOrDie();
// Positive RHS overflows. Negative RHS underflows.
if (value < 0)
return std::numeric_limits<int64_t>::min();
return std::numeric_limits<int64_t>::max();
}
int64_t SaturatedSub(TimeDelta delta, int64_t value) {
CheckedNumeric<int64_t> rv(delta.delta_);
rv -= value;
if (rv.IsValid())
return rv.ValueOrDie();
// Negative RHS overflows. Positive RHS underflows.
if (value < 0)
return std::numeric_limits<int64_t>::max();
return std::numeric_limits<int64_t>::min();
}
} // namespace time_internal
std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
return os << time_delta.InSecondsF() << " s";
}
// Time -----------------------------------------------------------------------
// static
Time Time::Now() {
return internal::g_time_now_function();
}
// static
Time Time::NowFromSystemTime() {
// Just use g_time_now_function because it returns the system time.
return internal::g_time_now_from_system_time_function();
}
// static
Time Time::FromDeltaSinceWindowsEpoch(TimeDelta delta) {
return Time(delta.InMicroseconds());
}
TimeDelta Time::ToDeltaSinceWindowsEpoch() const {
return TimeDelta::FromMicroseconds(us_);
}
// static
Time Time::FromTimeT(time_t tt) {
if (tt == 0)
return Time(); // Preserve 0 so we can tell it doesn't exist.
if (tt == std::numeric_limits<time_t>::max())
return Max();
return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
}
time_t Time::ToTimeT() const {
if (is_null())
return 0; // Preserve 0 so we can tell it doesn't exist.
if (is_max()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<time_t>::max();
}
if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
"value " << us_ << " to time_t.";
return std::numeric_limits<time_t>::max();
}
return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
}
// static
Time Time::FromDoubleT(double dt) {
if (dt == 0 || std::isnan(dt))
return Time(); // Preserve 0 so we can tell it doesn't exist.
return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
}
double Time::ToDoubleT() const {
if (is_null())
return 0; // Preserve 0 so we can tell it doesn't exist.
if (is_max()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
static_cast<double>(kMicrosecondsPerSecond));
}
#if defined(OS_POSIX)
// static
Time Time::FromTimeSpec(const timespec& ts) {
return FromDoubleT(ts.tv_sec +
static_cast<double>(ts.tv_nsec) /
base::Time::kNanosecondsPerSecond);
}
#endif
// static
Time Time::FromJsTime(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret
// 0 as the null time.
return Time(kTimeTToMicrosecondsOffset) +
TimeDelta::FromMillisecondsD(ms_since_epoch);
}
double Time::ToJsTime() const {
if (is_null()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (is_max()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
kMicrosecondsPerMillisecond);
}
Time Time::FromJavaTime(int64_t ms_since_epoch) {
return base::Time::UnixEpoch() +
base::TimeDelta::FromMilliseconds(ms_since_epoch);
}
int64_t Time::ToJavaTime() const {
if (is_null()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (is_max()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return ((us_ - kTimeTToMicrosecondsOffset) /
kMicrosecondsPerMillisecond);
}
// static
Time Time::UnixEpoch() {
Time time;
time.us_ = kTimeTToMicrosecondsOffset;
return time;
}
Time Time::Midnight(bool is_local) const {
Exploded exploded;
Explode(is_local, &exploded);
exploded.hour = 0;
exploded.minute = 0;
exploded.second = 0;
exploded.millisecond = 0;
Time out_time;
if (FromExploded(is_local, exploded, &out_time))
return out_time;
// This function must not fail.
NOTREACHED();
return Time();
}
// static
bool Time::FromStringInternal(const char* time_string,
bool is_local,
Time* parsed_time) {
DCHECK((time_string != nullptr) && (parsed_time != nullptr));
if (time_string[0] == '\0')
return false;
PRTime result_time = 0;
PRStatus result = PR_ParseTimeString(time_string,
is_local ? PR_FALSE : PR_TRUE,
&result_time);
if (PR_SUCCESS != result)
return false;
result_time += kTimeTToMicrosecondsOffset;
*parsed_time = Time(result_time);
return true;
}
// static
bool Time::ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) {
return lhs.year == rhs.year && lhs.month == rhs.month &&
lhs.day_of_month == rhs.day_of_month && lhs.hour == rhs.hour &&
lhs.minute == rhs.minute && lhs.second == rhs.second &&
lhs.millisecond == rhs.millisecond;
}
std::ostream& operator<<(std::ostream& os, Time time) {
Time::Exploded exploded;
time.UTCExplode(&exploded);
// Use StringPrintf because iostreams formatting is painful.
return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
exploded.year,
exploded.month,
exploded.day_of_month,
exploded.hour,
exploded.minute,
exploded.second,
exploded.millisecond);
}
// TimeTicks ------------------------------------------------------------------
// static
TimeTicks TimeTicks::Now() {
return internal::g_time_ticks_now_function();
}
// static
TimeTicks TimeTicks::UnixEpoch() {
static const base::NoDestructor<base::TimeTicks> epoch([]() {
return subtle::TimeTicksNowIgnoringOverride() -
(subtle::TimeNowIgnoringOverride() - Time::UnixEpoch());
}());
return *epoch;
}
TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
TimeDelta tick_interval) const {
// |interval_offset| is the offset from |this| to the next multiple of
// |tick_interval| after |tick_phase|, possibly negative if in the past.
TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
// If |this| is exactly on the interval (i.e. offset==0), don't adjust.
// Otherwise, if |tick_phase| was in the past, adjust forward to the next
// tick after |this|.
if (!interval_offset.is_zero() && tick_phase < *this)
interval_offset += tick_interval;
return *this + interval_offset;
}
std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
// This function formats a TimeTicks object as "bogo-microseconds".
// The origin and granularity of the count are platform-specific, and may very
// from run to run. Although bogo-microseconds usually roughly correspond to
// real microseconds, the only real guarantee is that the number never goes
// down during a single run.
const TimeDelta as_time_delta = time_ticks - TimeTicks();
return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
}
// ThreadTicks ----------------------------------------------------------------
// static
ThreadTicks ThreadTicks::Now() {
return internal::g_thread_ticks_now_function();
}
std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
}
// Time::Exploded -------------------------------------------------------------
inline bool is_in_range(int value, int lo, int hi) {
return lo <= value && value <= hi;
}
bool Time::Exploded::HasValidValues() const {
return is_in_range(month, 1, 12) &&
is_in_range(day_of_week, 0, 6) &&
is_in_range(day_of_month, 1, 31) &&
is_in_range(hour, 0, 23) &&
is_in_range(minute, 0, 59) &&
is_in_range(second, 0, 60) &&
is_in_range(millisecond, 0, 999);
}
} // namespace base
|