1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/heap/heap_page.h"
#include "base/allocator/partition_allocator/page_allocator.h"
#include "base/auto_reset.h"
#include "base/trace_event/process_memory_dump.h"
#include "third_party/blink/public/platform/platform.h"
#include "third_party/blink/renderer/platform/bindings/script_forbidden_scope.h"
#include "third_party/blink/renderer/platform/heap/address_cache.h"
#include "third_party/blink/renderer/platform/heap/blink_gc_memory_dump_provider.h"
#include "third_party/blink/renderer/platform/heap/heap_compact.h"
#include "third_party/blink/renderer/platform/heap/heap_stats_collector.h"
#include "third_party/blink/renderer/platform/heap/marking_verifier.h"
#include "third_party/blink/renderer/platform/heap/page_memory.h"
#include "third_party/blink/renderer/platform/heap/page_pool.h"
#include "third_party/blink/renderer/platform/heap/thread_state.h"
#include "third_party/blink/renderer/platform/histogram.h"
#include "third_party/blink/renderer/platform/instrumentation/tracing/trace_event.h"
#include "third_party/blink/renderer/platform/instrumentation/tracing/web_memory_allocator_dump.h"
#include "third_party/blink/renderer/platform/instrumentation/tracing/web_process_memory_dump.h"
#include "third_party/blink/renderer/platform/memory_coordinator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partitions.h"
#include "third_party/blink/renderer/platform/wtf/assertions.h"
#include "third_party/blink/renderer/platform/wtf/container_annotations.h"
#include "third_party/blink/renderer/platform/wtf/leak_annotations.h"
#include "third_party/blink/renderer/platform/wtf/time.h"
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
// When finalizing a non-inlined vector backing store/container, remove
// its contiguous container annotation. Required as it will not be destructed
// from its Vector.
#define ASAN_RETIRE_CONTAINER_ANNOTATION(object, objectSize) \
do { \
BasePage* page = PageFromObject(object); \
DCHECK(page); \
bool is_container = \
ThreadHeap::IsVectorArenaIndex(page->Arena()->ArenaIndex()); \
if (!is_container && page->IsLargeObjectPage()) \
is_container = \
static_cast<LargeObjectPage*>(page)->IsVectorBackingPage(); \
if (is_container) \
ANNOTATE_DELETE_BUFFER(object, objectSize, 0); \
} while (0)
// A vector backing store represented by a large object is marked
// so that when it is finalized, its ASan annotation will be
// correctly retired.
#define ASAN_MARK_LARGE_VECTOR_CONTAINER(arena, large_object) \
if (ThreadHeap::IsVectorArenaIndex(arena->ArenaIndex())) { \
BasePage* large_page = PageFromObject(large_object); \
DCHECK(large_page->IsLargeObjectPage()); \
static_cast<LargeObjectPage*>(large_page)->SetIsVectorBackingPage(); \
}
#else
#define ASAN_RETIRE_CONTAINER_ANNOTATION(payload, payloadSize)
#define ASAN_MARK_LARGE_VECTOR_CONTAINER(arena, largeObject)
#endif
namespace blink {
#if DCHECK_IS_ON() && defined(ARCH_CPU_64_BITS)
NO_SANITIZE_ADDRESS
void HeapObjectHeader::ZapMagic() {
CheckHeader();
magic_ = kZappedMagic;
}
#endif
void HeapObjectHeader::Finalize(Address object, size_t object_size) {
HeapAllocHooks::FreeHookIfEnabled(object);
const GCInfo* gc_info = GCInfoTable::Get().GCInfoFromIndex(GcInfoIndex());
if (gc_info->HasFinalizer())
gc_info->finalize_(object);
ASAN_RETIRE_CONTAINER_ANNOTATION(object, object_size);
}
BaseArena::BaseArena(ThreadState* state, int index)
: first_page_(nullptr),
first_unswept_page_(nullptr),
thread_state_(state),
index_(index) {}
BaseArena::~BaseArena() {
DCHECK(!first_page_);
DCHECK(SweepingCompleted());
}
void BaseArena::RemoveAllPages() {
ClearFreeLists();
DCHECK(SweepingCompleted());
while (first_page_) {
BasePage* page = first_page_;
page->Unlink(&first_page_);
page->RemoveFromHeap();
}
}
void BaseArena::TakeSnapshot(const String& dump_base_name,
ThreadState::GCSnapshotInfo& info) {
// |dumpBaseName| at this point is "blink_gc/thread_X/heaps/HeapName"
base::trace_event::MemoryAllocatorDump* allocator_dump =
BlinkGCMemoryDumpProvider::Instance()
->CreateMemoryAllocatorDumpForCurrentGC(dump_base_name);
size_t page_count = 0;
BasePage::HeapSnapshotInfo heap_info;
for (BasePage* page = first_unswept_page_; page; page = page->Next()) {
String dump_name = dump_base_name +
String::Format("/pages/page_%lu",
static_cast<unsigned long>(page_count++));
base::trace_event::MemoryAllocatorDump* page_dump =
BlinkGCMemoryDumpProvider::Instance()
->CreateMemoryAllocatorDumpForCurrentGC(dump_name);
page->TakeSnapshot(page_dump, info, heap_info);
}
allocator_dump->AddScalar("blink_page_count", "objects", page_count);
// When taking a full dump (w/ freelist), both the /buckets and /pages
// report their free size but they are not meant to be added together.
// Therefore, here we override the free_size of the parent heap to be
// equal to the free_size of the sum of its heap pages.
allocator_dump->AddScalar("free_size", "bytes", heap_info.free_size);
allocator_dump->AddScalar("free_count", "objects", heap_info.free_count);
}
#if DCHECK_IS_ON()
BasePage* BaseArena::FindPageFromAddress(Address address) {
for (BasePage* page = first_page_; page; page = page->Next()) {
if (page->Contains(address))
return page;
}
for (BasePage* page = first_unswept_page_; page; page = page->Next()) {
if (page->Contains(address))
return page;
}
return nullptr;
}
#endif
void BaseArena::MakeConsistentForGC() {
#if DCHECK_IS_ON()
DCHECK(IsConsistentForGC());
#endif
// We should not start a new GC until we finish sweeping in the current GC.
CHECK(SweepingCompleted());
HeapCompact* heap_compactor = GetThreadState()->Heap().Compaction();
if (!heap_compactor->IsCompactingArena(ArenaIndex()))
return;
BasePage* next_page = first_page_;
while (next_page) {
if (!next_page->IsLargeObjectPage())
heap_compactor->AddCompactingPage(next_page);
next_page = next_page->Next();
}
}
void BaseArena::MakeConsistentForMutator() {
ClearFreeLists();
#if DCHECK_IS_ON()
DCHECK(IsConsistentForGC());
#endif
DCHECK(!first_page_);
// Drop marks from marked objects and rebuild free lists in preparation for
// resuming the executions of mutators.
BasePage* previous_page = nullptr;
for (BasePage *page = first_unswept_page_; page;
previous_page = page, page = page->Next()) {
page->MakeConsistentForMutator();
page->MarkAsSwept();
}
if (previous_page) {
DCHECK(!SweepingCompleted());
previous_page->next_ = first_page_;
first_page_ = first_unswept_page_;
first_unswept_page_ = nullptr;
}
DCHECK(SweepingCompleted());
VerifyObjectStartBitmap();
}
size_t BaseArena::ObjectPayloadSizeForTesting() {
#if DCHECK_IS_ON()
DCHECK(IsConsistentForGC());
#endif
// DCHECK(SweepingCompleted());
size_t object_payload_size = 0;
for (BasePage* page = first_unswept_page_; page; page = page->Next())
object_payload_size += page->ObjectPayloadSizeForTesting();
return object_payload_size;
}
void BaseArena::PrepareForSweep() {
DCHECK(GetThreadState()->InAtomicMarkingPause());
DCHECK(SweepingCompleted());
ClearFreeLists();
// Verification depends on the allocation point being cleared.
VerifyObjectStartBitmap();
for (BasePage* page = first_page_; page; page = page->Next()) {
page->MarkAsUnswept();
}
// Move all pages to a list of unswept pages.
first_unswept_page_ = first_page_;
first_page_ = nullptr;
}
#if defined(ADDRESS_SANITIZER)
void BaseArena::PoisonArena() {
for (BasePage* page = first_unswept_page_; page; page = page->Next())
page->PoisonUnmarkedObjects();
}
#endif
Address BaseArena::LazySweep(size_t allocation_size, size_t gc_info_index) {
// If there are no pages to be swept, return immediately.
if (SweepingCompleted())
return nullptr;
CHECK(GetThreadState()->IsSweepingInProgress());
// lazySweepPages() can be called recursively if finalizers invoked in
// page->sweep() allocate memory and the allocation triggers
// lazySweepPages(). This check prevents the sweeping from being executed
// recursively.
if (GetThreadState()->SweepForbidden())
return nullptr;
Address result = nullptr;
{
ThreadHeapStatsCollector::Scope stats_scope(
GetThreadState()->Heap().stats_collector(),
ThreadHeapStatsCollector::kLazySweepOnAllocation);
ThreadState::SweepForbiddenScope sweep_forbidden(GetThreadState());
ScriptForbiddenScope script_forbidden;
result = LazySweepPages(allocation_size, gc_info_index);
}
return result;
}
void BaseArena::SweepUnsweptPage() {
BasePage* page = first_unswept_page_;
const bool is_empty = page->Sweep();
page->Unlink(&first_unswept_page_);
if (is_empty) {
page->RemoveFromHeap();
} else {
page->Link(&first_page_);
page->MarkAsSwept();
}
}
bool BaseArena::LazySweepWithDeadline(TimeTicks deadline) {
// It might be heavy to call
// Platform::current()->monotonicallyIncreasingTimeSeconds() per page (i.e.,
// 128 KB sweep or one LargeObject sweep), so we check the deadline per 10
// pages.
static const int kDeadlineCheckInterval = 10;
CHECK(GetThreadState()->IsSweepingInProgress());
DCHECK(GetThreadState()->SweepForbidden());
DCHECK(ScriptForbiddenScope::IsScriptForbidden());
NormalPageArena* normal_arena = nullptr;
if (first_unswept_page_ && !first_unswept_page_->IsLargeObjectPage()) {
// Mark this NormalPageArena as being lazily swept.
NormalPage* normal_page =
reinterpret_cast<NormalPage*>(first_unswept_page_);
normal_arena = normal_page->ArenaForNormalPage();
normal_arena->SetIsLazySweeping(true);
}
int page_count = 1;
while (!SweepingCompleted()) {
SweepUnsweptPage();
if (page_count % kDeadlineCheckInterval == 0) {
if (deadline <= CurrentTimeTicks()) {
// Deadline has come.
if (normal_arena)
normal_arena->SetIsLazySweeping(false);
return SweepingCompleted();
}
}
page_count++;
}
if (normal_arena)
normal_arena->SetIsLazySweeping(false);
return true;
}
void BaseArena::CompleteSweep() {
CHECK(GetThreadState()->IsSweepingInProgress());
DCHECK(GetThreadState()->SweepForbidden());
DCHECK(ScriptForbiddenScope::IsScriptForbidden());
// Some phases, e.g. verification, require iterability of a page.
MakeIterable();
while (!SweepingCompleted()) {
SweepUnsweptPage();
}
}
Address BaseArena::AllocateLargeObject(size_t allocation_size,
size_t gc_info_index) {
// TODO(sof): should need arise, support eagerly finalized large objects.
CHECK(ArenaIndex() != BlinkGC::kEagerSweepArenaIndex);
LargeObjectArena* large_object_arena = static_cast<LargeObjectArena*>(
GetThreadState()->Heap().Arena(BlinkGC::kLargeObjectArenaIndex));
Address large_object = large_object_arena->AllocateLargeObjectPage(
allocation_size, gc_info_index);
ASAN_MARK_LARGE_VECTOR_CONTAINER(this, large_object);
return large_object;
}
bool BaseArena::WillObjectBeLazilySwept(BasePage* page,
void* object_pointer) const {
// If not on the current page being (potentially) lazily swept,
// |objectPointer| is an unmarked, sweepable object.
if (page != first_unswept_page_)
return true;
DCHECK(!page->IsLargeObjectPage());
// Check if the arena is currently being lazily swept.
NormalPage* normal_page = reinterpret_cast<NormalPage*>(page);
NormalPageArena* normal_arena = normal_page->ArenaForNormalPage();
if (!normal_arena->IsLazySweeping())
return true;
// Rare special case: unmarked object is on the page being lazily swept,
// and a finalizer for an object on that page calls
// ThreadHeap::willObjectBeLazilySwept().
//
// Need to determine if |objectPointer| represents a live (unmarked) object or
// an unmarked object that will be lazily swept later. As lazy page sweeping
// doesn't record a frontier pointer representing how far along it is, the
// page is scanned from the start, skipping past freed & unmarked regions.
//
// If no marked objects are encountered before |objectPointer|, we know that
// the finalizing object calling willObjectBeLazilySwept() comes later, and
// |objectPointer| has been deemed to be alive already (=> it won't be swept.)
//
// If a marked object is encountered before |objectPointer|, it will
// not have been lazily swept past already. Hence it represents an unmarked,
// sweepable object.
//
// As willObjectBeLazilySwept() is used rarely and it happening to be
// used while runnning a finalizer on the page being lazily swept is
// even rarer, the page scan is considered acceptable and something
// really wanted -- willObjectBeLazilySwept()'s result can be trusted.
Address page_end = normal_page->PayloadEnd();
for (Address header_address = normal_page->Payload();
header_address < page_end;) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
size_t size = header->size();
// Scan made it to |objectPointer| without encountering any marked objects.
// => lazy sweep will have processed this unmarked, but live, object.
// => |object_pointer| will not be lazily swept.
//
// Notice that |object_pointer| might be pointer to a GarbageCollectedMixin,
// hence using |FromPayload| to derive the HeapObjectHeader isn't possible
// (and use its value to check if |header_address| is equal to it.)
if (header_address > object_pointer)
return false;
if (!header->IsFree() && header->IsMarked()) {
// There must be a marked object on this page and the one located must
// have room after it for the unmarked |objectPointer| object.
DCHECK(header_address + size < page_end);
return true;
}
header_address += size;
}
NOTREACHED();
return true;
}
NormalPageArena::NormalPageArena(ThreadState* state, int index)
: BaseArena(state, index),
current_allocation_point_(nullptr),
remaining_allocation_size_(0),
last_remaining_allocation_size_(0),
promptly_freed_size_(0),
is_lazy_sweeping_(false) {
ClearFreeLists();
}
void NormalPageArena::MakeConsistentForGC() {
BaseArena::MakeConsistentForGC();
// Remove linear allocation area.
SetAllocationPoint(nullptr, 0);
}
void NormalPageArena::ClearFreeLists() {
SetAllocationPoint(nullptr, 0);
free_list_.Clear();
promptly_freed_size_ = 0;
}
void NormalPageArena::MakeIterable() {
SetAllocationPoint(nullptr, 0);
}
size_t NormalPageArena::ArenaSize() {
size_t size = 0;
BasePage* page = first_page_;
while (page) {
size += page->size();
page = page->Next();
}
LOG_HEAP_FREELIST_VERBOSE()
<< "Heap size: " << size << "(" << ArenaIndex() << ")";
return size;
}
size_t NormalPageArena::FreeListSize() {
size_t free_size = free_list_.FreeListSize();
LOG_HEAP_FREELIST_VERBOSE()
<< "Free size: " << free_size << "(" << ArenaIndex() << ")";
return free_size;
}
void NormalPageArena::SweepAndCompact() {
ThreadHeap& heap = GetThreadState()->Heap();
if (!heap.Compaction()->IsCompactingArena(ArenaIndex()))
return;
if (SweepingCompleted()) {
heap.Compaction()->FinishedArenaCompaction(this, 0, 0);
return;
}
// Compaction is performed in-place, sliding objects down over unused
// holes for a smaller heap page footprint and improved locality.
// A "compaction pointer" is consequently kept, pointing to the next
// available address to move objects down to. It will belong to one
// of the already sweep-compacted pages for this arena, but as compaction
// proceeds, it will not belong to the same page as the one being
// currently compacted.
//
// The compaction pointer is represented by the
// |(currentPage, allocationPoint)| pair, with |allocationPoint|
// being the offset into |currentPage|, making up the next
// available location. When the compaction of an arena page causes the
// compaction pointer to exhaust the current page it is compacting into,
// page compaction will advance the current page of the compaction
// pointer, as well as the allocation point.
//
// By construction, the page compaction can be performed without having
// to allocate any new pages. So to arrange for the page compaction's
// supply of freed, available pages, we chain them together after each
// has been "compacted from". The page compaction will then reuse those
// as needed, and once finished, the chained, available pages can be
// released back to the OS.
//
// To ease the passing of the compaction state when iterating over an
// arena's pages, package it up into a |CompactionContext|.
NormalPage::CompactionContext context;
context.compacted_pages_ = &first_page_;
while (!SweepingCompleted()) {
BasePage* page = first_unswept_page_;
// Large objects do not belong to this arena.
DCHECK(!page->IsLargeObjectPage());
NormalPage* normal_page = static_cast<NormalPage*>(page);
normal_page->Unlink(&first_unswept_page_);
normal_page->MarkAsSwept();
// If not the first page, add |normalPage| onto the available pages chain.
if (!context.current_page_)
context.current_page_ = normal_page;
else
normal_page->Link(&context.available_pages_);
normal_page->SweepAndCompact(context);
}
// All pages were empty; nothing to compact.
if (!context.current_page_) {
heap.Compaction()->FinishedArenaCompaction(this, 0, 0);
return;
}
size_t freed_size = 0;
size_t freed_page_count = 0;
// If the current page hasn't been allocated into, add it to the available
// list, for subsequent release below.
size_t allocation_point = context.allocation_point_;
if (!allocation_point) {
context.current_page_->Link(&context.available_pages_);
} else {
NormalPage* current_page = context.current_page_;
current_page->Link(&first_page_);
if (allocation_point != current_page->PayloadSize()) {
// Put the remainder of the page onto the free list.
freed_size = current_page->PayloadSize() - allocation_point;
Address payload = current_page->Payload();
SET_MEMORY_INACCESSIBLE(payload + allocation_point, freed_size);
current_page->ArenaForNormalPage()->AddToFreeList(
payload + allocation_point, freed_size);
}
}
// Return available pages to the free page pool, decommitting them from
// the pagefile.
BasePage* available_pages = context.available_pages_;
#if DEBUG_HEAP_COMPACTION
std::stringstream stream;
#endif
while (available_pages) {
size_t page_size = available_pages->size();
#if DEBUG_HEAP_COMPACTION
if (!freed_page_count)
stream << "Releasing:";
stream << " [" << available_pages << ", " << (available_pages + page_size)
<< "]";
#endif
freed_size += page_size;
freed_page_count++;
BasePage* next_page;
available_pages->Unlink(&next_page);
#if !(DCHECK_IS_ON() || defined(LEAK_SANITIZER) || \
defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER))
// Clear out the page before adding it to the free page pool, which
// decommits it. Recommitting the page must find a zeroed page later.
// We cannot assume that the OS will hand back a zeroed page across
// its "decommit" operation.
//
// If in a debug setting, the unused page contents will have been
// zapped already; leave it in that state.
DCHECK(!available_pages->IsLargeObjectPage());
NormalPage* unused_page = reinterpret_cast<NormalPage*>(available_pages);
memset(unused_page->Payload(), 0, unused_page->PayloadSize());
#endif
available_pages->RemoveFromHeap();
available_pages = static_cast<NormalPage*>(next_page);
}
#if DEBUG_HEAP_COMPACTION
if (freed_page_count)
LOG_HEAP_COMPACTION() << stream.str();
#endif
heap.Compaction()->FinishedArenaCompaction(this, freed_page_count,
freed_size);
VerifyObjectStartBitmap();
}
void NormalPageArena::VerifyObjectStartBitmap() {
#if DCHECK_IS_ON()
// Verifying object start bitmap requires iterability of pages. As compaction
// may set up a new we have to reset here.
SetAllocationPoint(nullptr, 0);
for (NormalPage* page = static_cast<NormalPage*>(first_page_); page;
page = static_cast<NormalPage*>(page->Next()))
page->VerifyObjectStartBitmapIsConsistentWithPayload();
#endif // DCHECK_IS_ON()
}
void NormalPageArena::VerifyMarking() {
#if DCHECK_IS_ON()
// We cannot rely on other marking phases to clear the allocation area as
// for incremental marking the application is running between steps and
// might set up a new area.
SetAllocationPoint(nullptr, 0);
for (NormalPage* page = static_cast<NormalPage*>(first_page_); page;
page = static_cast<NormalPage*>(page->Next()))
page->VerifyMarking();
#endif // DCHECK_IS_ON()
}
#if DCHECK_IS_ON()
bool NormalPageArena::IsConsistentForGC() {
// A thread heap is consistent for sweeping if none of the pages to be swept
// contain a freelist block or the current allocation point.
for (size_t i = 0; i < kBlinkPageSizeLog2; ++i) {
for (FreeListEntry* free_list_entry = free_list_.free_lists_[i];
free_list_entry; free_list_entry = free_list_entry->Next()) {
if (PagesToBeSweptContains(free_list_entry->GetAddress()))
return false;
}
}
if (HasCurrentAllocationArea()) {
if (PagesToBeSweptContains(CurrentAllocationPoint()))
return false;
}
return true;
}
bool NormalPageArena::PagesToBeSweptContains(Address address) {
for (BasePage* page = first_unswept_page_; page; page = page->Next()) {
if (page->Contains(address))
return true;
}
return false;
}
#endif
void NormalPageArena::TakeFreelistSnapshot(const String& dump_name) {
if (free_list_.TakeSnapshot(dump_name)) {
base::trace_event::MemoryAllocatorDump* buckets_dump =
BlinkGCMemoryDumpProvider::Instance()
->CreateMemoryAllocatorDumpForCurrentGC(dump_name + "/buckets");
base::trace_event::MemoryAllocatorDump* pages_dump =
BlinkGCMemoryDumpProvider::Instance()
->CreateMemoryAllocatorDumpForCurrentGC(dump_name + "/pages");
BlinkGCMemoryDumpProvider::Instance()
->CurrentProcessMemoryDump()
->AddOwnershipEdge(pages_dump->guid(), buckets_dump->guid());
}
}
void NormalPageArena::AllocatePage() {
GetThreadState()->Heap().address_cache()->MarkDirty();
PageMemory* page_memory =
GetThreadState()->Heap().GetFreePagePool()->Take(ArenaIndex());
if (!page_memory) {
// Allocate a memory region for blinkPagesPerRegion pages that
// will each have the following layout.
//
// [ guard os page | ... payload ... | guard os page ]
// ^---{ aligned to blink page size }
PageMemoryRegion* region = PageMemoryRegion::AllocateNormalPages(
GetThreadState()->Heap().GetRegionTree());
// Setup the PageMemory object for each of the pages in the region.
for (size_t i = 0; i < kBlinkPagesPerRegion; ++i) {
PageMemory* memory = PageMemory::SetupPageMemoryInRegion(
region, i * kBlinkPageSize, BlinkPagePayloadSize());
// Take the first possible page ensuring that this thread actually
// gets a page and add the rest to the page pool.
if (!page_memory) {
bool result = memory->Commit();
// If you hit the CHECK, it will mean that you're hitting the limit
// of the number of mmapped regions the OS can support
// (e.g., /proc/sys/vm/max_map_count in Linux) or on that Windows you
// have exceeded the max commit charge across all processes for the
// system.
CHECK(result);
page_memory = memory;
} else {
GetThreadState()->Heap().GetFreePagePool()->Add(ArenaIndex(), memory);
}
}
}
NormalPage* page =
new (page_memory->WritableStart()) NormalPage(page_memory, this);
page->Link(&first_page_);
GetThreadState()->Heap().IncreaseAllocatedSpace(page->size());
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
// Allow the following addToFreeList() to add the newly allocated memory
// to the free list.
ASAN_UNPOISON_MEMORY_REGION(page->Payload(), page->PayloadSize());
Address address = page->Payload();
for (size_t i = 0; i < page->PayloadSize(); i++)
address[i] = kReuseAllowedZapValue;
ASAN_POISON_MEMORY_REGION(page->Payload(), page->PayloadSize());
#endif
AddToFreeList(page->Payload(), page->PayloadSize());
}
void NormalPageArena::FreePage(NormalPage* page) {
GetThreadState()->Heap().DecreaseAllocatedSpace(page->size());
PageMemory* memory = page->Storage();
page->~NormalPage();
GetThreadState()->Heap().GetFreePagePool()->Add(ArenaIndex(), memory);
}
ObjectStartBitmap::ObjectStartBitmap(Address offset) : offset_(offset) {
Clear();
}
void ObjectStartBitmap::Clear() {
memset(&object_start_bit_map_, 0, kReservedForBitmap);
}
void NormalPageArena::PromptlyFreeObject(HeapObjectHeader* header) {
DCHECK(!GetThreadState()->SweepForbidden());
Address address = reinterpret_cast<Address>(header);
Address payload = header->Payload();
size_t size = header->size();
size_t payload_size = header->PayloadSize();
DCHECK_GT(size, 0u);
#if DCHECK_IS_ON()
DCHECK_EQ(PageFromObject(address), FindPageFromAddress(address));
#endif
{
ThreadState::SweepForbiddenScope forbidden_scope(GetThreadState());
header->Finalize(payload, payload_size);
if (IsObjectAllocatedAtAllocationPoint(header)) {
current_allocation_point_ -= size;
DCHECK_EQ(address, current_allocation_point_);
SetRemainingAllocationSize(remaining_allocation_size_ + size);
SET_MEMORY_INACCESSIBLE(address, size);
// Memory that is part of the allocation point is not allowed to be part
// of the object start bit map.
reinterpret_cast<NormalPage*>(PageFromObject(header))
->object_start_bit_map()
->ClearBit(address);
return;
}
PromptlyFreeObjectInFreeList(header, size);
}
}
void NormalPageArena::PromptlyFreeObjectInFreeList(HeapObjectHeader* header,
size_t size) {
Address address = reinterpret_cast<Address>(header);
NormalPage* page = reinterpret_cast<NormalPage*>(PageFromObject(header));
if (page->HasBeenSwept()) {
Address payload = header->Payload();
size_t payload_size = header->PayloadSize();
// If the page has been swept a promptly freed object may be adjacent
// to other free list entries. We make the object available for future
// allocation right away by adding it to the free list and increase the
// promptly_freed_size_ counter which may result in coalescing later.
SET_MEMORY_INACCESSIBLE(payload, payload_size);
CHECK_MEMORY_INACCESSIBLE(payload, payload_size);
AddToFreeList(address, size);
promptly_freed_size_ += size;
} else {
// If we do not have free list entries the sweeper will take care of
// coalescing.
header->Unmark();
}
GetThreadState()->Heap().DecreaseAllocatedObjectSize(size);
}
bool NormalPageArena::ExpandObject(HeapObjectHeader* header, size_t new_size) {
// It's possible that Vector requests a smaller expanded size because
// Vector::shrinkCapacity can set a capacity smaller than the actual payload
// size.
if (header->PayloadSize() >= new_size)
return true;
size_t allocation_size = ThreadHeap::AllocationSizeFromSize(new_size);
DCHECK_GT(allocation_size, header->size());
size_t expand_size = allocation_size - header->size();
if (IsObjectAllocatedAtAllocationPoint(header) &&
expand_size <= remaining_allocation_size_) {
current_allocation_point_ += expand_size;
DCHECK_GE(remaining_allocation_size_, expand_size);
SetRemainingAllocationSize(remaining_allocation_size_ - expand_size);
// Unpoison the memory used for the object (payload).
SET_MEMORY_ACCESSIBLE(header->PayloadEnd(), expand_size);
header->SetSize(allocation_size);
#if DCHECK_IS_ON()
DCHECK(FindPageFromAddress(header->PayloadEnd() - 1));
#endif
return true;
}
return false;
}
bool NormalPageArena::ShrinkObject(HeapObjectHeader* header, size_t new_size) {
DCHECK_GT(header->PayloadSize(), new_size);
size_t allocation_size = ThreadHeap::AllocationSizeFromSize(new_size);
DCHECK_GT(header->size(), allocation_size);
size_t shrink_size = header->size() - allocation_size;
if (IsObjectAllocatedAtAllocationPoint(header)) {
current_allocation_point_ -= shrink_size;
SetRemainingAllocationSize(remaining_allocation_size_ + shrink_size);
SET_MEMORY_INACCESSIBLE(current_allocation_point_, shrink_size);
header->SetSize(allocation_size);
return true;
}
DCHECK_GE(shrink_size, sizeof(HeapObjectHeader));
DCHECK_GT(header->GcInfoIndex(), 0u);
Address shrink_address = header->PayloadEnd() - shrink_size;
HeapObjectHeader* freed_header =
new (NotNull, shrink_address) HeapObjectHeader(
shrink_size, header->GcInfoIndex(), HeapObjectHeader::kNormalPage);
PromptlyFreeObjectInFreeList(freed_header, shrink_size);
#if DCHECK_IS_ON()
DCHECK_EQ(PageFromObject(reinterpret_cast<Address>(header)),
FindPageFromAddress(reinterpret_cast<Address>(header)));
#endif
header->SetSize(allocation_size);
return false;
}
Address NormalPageArena::LazySweepPages(size_t allocation_size,
size_t gc_info_index) {
DCHECK(!HasCurrentAllocationArea());
base::AutoReset<bool> is_lazy_sweeping(&is_lazy_sweeping_, true);
Address result = nullptr;
while (!SweepingCompleted()) {
BasePage* page = first_unswept_page_;
const bool is_empty = page->Sweep();
page->Unlink(&first_unswept_page_);
if (is_empty) {
page->RemoveFromHeap();
} else {
page->Link(&first_page_);
page->MarkAsSwept();
// For NormalPage, stop lazy sweeping once we find a slot to
// allocate a new object.
result = AllocateFromFreeList(allocation_size, gc_info_index);
if (result)
break;
}
}
return result;
}
void NormalPageArena::SetRemainingAllocationSize(
size_t new_remaining_allocation_size) {
remaining_allocation_size_ = new_remaining_allocation_size;
// Sync recorded allocated-object size:
// - if previous alloc checkpoint is larger, allocation size has increased.
// - if smaller, a net reduction in size since last call to
// updateRemainingAllocationSize().
if (last_remaining_allocation_size_ > remaining_allocation_size_) {
GetThreadState()->Heap().IncreaseAllocatedObjectSize(
last_remaining_allocation_size_ - remaining_allocation_size_);
} else if (last_remaining_allocation_size_ != remaining_allocation_size_) {
GetThreadState()->Heap().DecreaseAllocatedObjectSize(
remaining_allocation_size_ - last_remaining_allocation_size_);
}
last_remaining_allocation_size_ = remaining_allocation_size_;
}
void NormalPageArena::UpdateRemainingAllocationSize() {
if (last_remaining_allocation_size_ > RemainingAllocationSize()) {
GetThreadState()->Heap().IncreaseAllocatedObjectSize(
last_remaining_allocation_size_ - RemainingAllocationSize());
last_remaining_allocation_size_ = RemainingAllocationSize();
}
DCHECK_EQ(last_remaining_allocation_size_, RemainingAllocationSize());
}
void NormalPageArena::SetAllocationPoint(Address point, size_t size) {
#if DCHECK_IS_ON()
if (point) {
DCHECK(size);
BasePage* page = PageFromObject(point);
DCHECK(!page->IsLargeObjectPage());
DCHECK_LE(size, static_cast<NormalPage*>(page)->PayloadSize());
}
#endif
if (HasCurrentAllocationArea()) {
AddToFreeList(CurrentAllocationPoint(), RemainingAllocationSize());
}
UpdateRemainingAllocationSize();
current_allocation_point_ = point;
last_remaining_allocation_size_ = remaining_allocation_size_ = size;
if (point) {
// Current allocation point can never be part of the object bitmap start
// because the area can grow or shrink. Will be added back before a GC when
// clearing the allocation point.
NormalPage* page = reinterpret_cast<NormalPage*>(PageFromObject(point));
page->object_start_bit_map()->ClearBit(point);
}
}
Address NormalPageArena::OutOfLineAllocate(size_t allocation_size,
size_t gc_info_index) {
DCHECK_GT(allocation_size, RemainingAllocationSize());
DCHECK_GE(allocation_size, kAllocationGranularity);
// 1. If this allocation is big enough, allocate a large object.
if (allocation_size >= kLargeObjectSizeThreshold)
return AllocateLargeObject(allocation_size, gc_info_index);
// 2. Try to allocate from a free list.
UpdateRemainingAllocationSize();
Address result = AllocateFromFreeList(allocation_size, gc_info_index);
if (result)
return result;
// 3. Reset the allocation point.
SetAllocationPoint(nullptr, 0);
// 4. Lazily sweep pages of this heap until we find a freed area for
// this allocation or we finish sweeping all pages of this heap.
result = LazySweep(allocation_size, gc_info_index);
if (result)
return result;
// 5. Complete sweeping.
GetThreadState()->CompleteSweep();
// 6. Check if we should trigger a GC.
GetThreadState()->ScheduleGCIfNeeded();
// 7. Add a new page to this heap.
AllocatePage();
// 8. Try to allocate from a free list. This allocation must succeed.
result = AllocateFromFreeList(allocation_size, gc_info_index);
CHECK(result);
return result;
}
Address NormalPageArena::AllocateFromFreeList(size_t allocation_size,
size_t gc_info_index) {
// Try reusing a block from the largest bin. The underlying reasoning
// being that we want to amortize this slow allocation call by carving
// off as a large a free block as possible in one go; a block that will
// service this block and let following allocations be serviced quickly
// by bump allocation.
size_t bucket_size = static_cast<size_t>(1)
<< free_list_.biggest_free_list_index_;
int index = free_list_.biggest_free_list_index_;
for (; index > 0; --index, bucket_size >>= 1) {
FreeListEntry* entry = free_list_.free_lists_[index];
if (allocation_size > bucket_size) {
// Final bucket candidate; check initial entry if it is able
// to service this allocation. Do not perform a linear scan,
// as it is considered too costly.
if (!entry || entry->size() < allocation_size)
break;
}
if (entry) {
entry->Unlink(&free_list_.free_lists_[index]);
SetAllocationPoint(entry->GetAddress(), entry->size());
DCHECK(HasCurrentAllocationArea());
DCHECK_GE(RemainingAllocationSize(), allocation_size);
free_list_.biggest_free_list_index_ = index;
return AllocateObject(allocation_size, gc_info_index);
}
}
free_list_.biggest_free_list_index_ = index;
return nullptr;
}
LargeObjectArena::LargeObjectArena(ThreadState* state, int index)
: BaseArena(state, index) {}
Address LargeObjectArena::AllocateLargeObjectPage(size_t allocation_size,
size_t gc_info_index) {
// Caller already added space for object header and rounded up to allocation
// alignment
DCHECK(!(allocation_size & kAllocationMask));
// 1. Try to sweep large objects more than allocationSize bytes
// before allocating a new large object.
Address result = LazySweep(allocation_size, gc_info_index);
if (result)
return result;
// 2. If we have failed in sweeping allocationSize bytes,
// we complete sweeping before allocating this large object.
GetThreadState()->CompleteSweep();
// 3. Check if we should trigger a GC.
GetThreadState()->ScheduleGCIfNeeded();
return DoAllocateLargeObjectPage(allocation_size, gc_info_index);
}
Address LargeObjectArena::DoAllocateLargeObjectPage(size_t allocation_size,
size_t gc_info_index) {
size_t large_object_size =
LargeObjectPage::PageHeaderSize() + allocation_size;
// If ASan is supported we add allocationGranularity bytes to the allocated
// space and poison that to detect overflows
#if defined(ADDRESS_SANITIZER)
large_object_size += kAllocationGranularity;
#endif
GetThreadState()->Heap().address_cache()->MarkDirty();
PageMemory* page_memory = PageMemory::Allocate(
large_object_size, GetThreadState()->Heap().GetRegionTree());
Address large_object_address = page_memory->WritableStart();
Address header_address =
large_object_address + LargeObjectPage::PageHeaderSize();
#if DCHECK_IS_ON()
// Verify that the allocated PageMemory is expectedly zeroed.
for (size_t i = 0; i < large_object_size; ++i)
DCHECK(!large_object_address[i]);
#endif
DCHECK_GT(gc_info_index, 0u);
LargeObjectPage* large_object = new (large_object_address)
LargeObjectPage(page_memory, this, allocation_size);
HeapObjectHeader* header = new (NotNull, header_address) HeapObjectHeader(
kLargeObjectSizeInHeader, gc_info_index, HeapObjectHeader::kLargePage);
Address result = header_address + sizeof(*header);
DCHECK(!(reinterpret_cast<uintptr_t>(result) & kAllocationMask));
// Poison the object header and allocationGranularity bytes after the object
ASAN_POISON_MEMORY_REGION(header, sizeof(*header));
ASAN_POISON_MEMORY_REGION(large_object->GetAddress() + large_object->size(),
kAllocationGranularity);
large_object->Link(&first_page_);
GetThreadState()->Heap().IncreaseAllocatedSpace(large_object->size());
GetThreadState()->Heap().IncreaseAllocatedObjectSize(
large_object->PayloadSize());
return result;
}
void LargeObjectArena::FreeLargeObjectPage(LargeObjectPage* object) {
ASAN_UNPOISON_MEMORY_REGION(object->Payload(), object->PayloadSize());
object->ObjectHeader()->Finalize(object->Payload(), object->PayloadSize());
GetThreadState()->Heap().DecreaseAllocatedSpace(object->size());
// Unpoison the object header and allocationGranularity bytes after the
// object before freeing.
ASAN_UNPOISON_MEMORY_REGION(object->ObjectHeader(), sizeof(HeapObjectHeader));
ASAN_UNPOISON_MEMORY_REGION(object->GetAddress() + object->size(),
kAllocationGranularity);
PageMemory* memory = object->Storage();
object->~LargeObjectPage();
delete memory;
}
Address LargeObjectArena::LazySweepPages(size_t allocation_size,
size_t gc_info_index) {
Address result = nullptr;
size_t swept_size = 0;
while (!SweepingCompleted()) {
BasePage* page = first_unswept_page_;
const bool is_empty = page->Sweep();
page->Unlink(&first_unswept_page_);
if (is_empty) {
swept_size += static_cast<LargeObjectPage*>(page)->ObjectSize();
page->RemoveFromHeap();
// For LargeObjectPage, stop lazy sweeping once we have swept
// more than |allocation_size| bytes.
if (swept_size >= allocation_size) {
result = DoAllocateLargeObjectPage(allocation_size, gc_info_index);
DCHECK(result);
break;
}
} else {
page->Link(&first_page_);
page->MarkAsSwept();
}
}
return result;
}
FreeList::FreeList() : biggest_free_list_index_(0) {}
void FreeList::AddToFreeList(Address address, size_t size) {
DCHECK_LT(size, BlinkPagePayloadSize());
// The free list entries are only pointer aligned (but when we allocate
// from them we are 8 byte aligned due to the header size).
DCHECK(!((reinterpret_cast<uintptr_t>(address) + sizeof(HeapObjectHeader)) &
kAllocationMask));
DCHECK(!(size & kAllocationMask));
ASAN_UNPOISON_MEMORY_REGION(address, size);
FreeListEntry* entry;
if (size < sizeof(*entry)) {
// Create a dummy header with only a size and freelist bit set.
DCHECK_GE(size, sizeof(HeapObjectHeader));
// Free list encode the size to mark the lost memory as freelist memory.
new (NotNull, address) HeapObjectHeader(size, kGcInfoIndexForFreeListHeader,
HeapObjectHeader::kNormalPage);
ASAN_POISON_MEMORY_REGION(address, size);
// This memory gets lost. Sweeping can reclaim it.
return;
}
entry = new (NotNull, address) FreeListEntry(size);
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
// The following logic delays reusing free lists for (at least) one GC
// cycle. This is helpful to detect use-after-free errors that could be caused
// by lazy sweeping etc.
size_t allowed_count = 0;
size_t forbidden_count = 0;
GetAllowedAndForbiddenCounts(address, size, allowed_count, forbidden_count);
size_t entry_count = size - sizeof(FreeListEntry);
if (forbidden_count == entry_count) {
// If all values in the memory region are reuseForbiddenZapValue,
// we flip them to reuseAllowedZapValue. This allows the next
// addToFreeList() to add the memory region to the free list
// (unless someone concatenates the memory region with another memory
// region that contains reuseForbiddenZapValue.)
for (size_t i = sizeof(FreeListEntry); i < size; i++)
address[i] = kReuseAllowedZapValue;
ASAN_POISON_MEMORY_REGION(address, size);
// Don't add the memory region to the free list in this addToFreeList().
return;
}
if (allowed_count != entry_count) {
// If the memory region mixes reuseForbiddenZapValue and
// reuseAllowedZapValue, we (conservatively) flip all the values
// to reuseForbiddenZapValue. These values will be changed to
// reuseAllowedZapValue in the next addToFreeList().
for (size_t i = sizeof(FreeListEntry); i < size; i++)
address[i] = kReuseForbiddenZapValue;
ASAN_POISON_MEMORY_REGION(address, size);
// Don't add the memory region to the free list in this addToFreeList().
return;
}
// We reach here only when all the values in the memory region are
// reuseAllowedZapValue. In this case, we are allowed to add the memory
// region to the free list and reuse it for another object.
#endif
ASAN_POISON_MEMORY_REGION(address, size);
int index = BucketIndexForSize(size);
entry->Link(&free_lists_[index]);
if (index > biggest_free_list_index_)
biggest_free_list_index_ = index;
}
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
NO_SANITIZE_MEMORY
void NOINLINE FreeList::GetAllowedAndForbiddenCounts(Address address,
size_t size,
size_t& allowed_count,
size_t& forbidden_count) {
for (size_t i = sizeof(FreeListEntry); i < size; i++) {
if (address[i] == kReuseAllowedZapValue)
allowed_count++;
else if (address[i] == kReuseForbiddenZapValue)
forbidden_count++;
else
NOTREACHED();
}
}
NO_SANITIZE_ADDRESS
NO_SANITIZE_MEMORY
void NOINLINE FreeList::ZapFreedMemory(Address address, size_t size) {
for (size_t i = 0; i < size; i++) {
// See the comment in addToFreeList().
if (address[i] != kReuseAllowedZapValue)
address[i] = kReuseForbiddenZapValue;
}
}
void NOINLINE FreeList::CheckFreedMemoryIsZapped(Address address, size_t size) {
for (size_t i = 0; i < size; i++) {
DCHECK(address[i] == kReuseAllowedZapValue ||
address[i] == kReuseForbiddenZapValue);
}
}
#endif
size_t FreeList::FreeListSize() const {
size_t free_size = 0;
for (unsigned i = 0; i < kBlinkPageSizeLog2; ++i) {
FreeListEntry* entry = free_lists_[i];
while (entry) {
free_size += entry->size();
entry = entry->Next();
}
}
#if DEBUG_HEAP_FREELIST
if (free_size) {
LOG_HEAP_FREELIST_VERBOSE() << "FreeList(" << this << "): " << free_size;
for (unsigned i = 0; i < kBlinkPageSizeLog2; ++i) {
FreeListEntry* entry = free_lists_[i];
size_t bucket = 0;
size_t count = 0;
while (entry) {
bucket += entry->size();
count++;
entry = entry->Next();
}
if (bucket) {
LOG_HEAP_FREELIST_VERBOSE()
<< "[" << (0x1 << i) << ", " << (0x1 << (i + 1)) << "]: " << bucket
<< " (" << count << ")";
}
}
}
#endif
return free_size;
}
void FreeList::Clear() {
biggest_free_list_index_ = 0;
for (size_t i = 0; i < kBlinkPageSizeLog2; ++i)
free_lists_[i] = nullptr;
}
int FreeList::BucketIndexForSize(size_t size) {
DCHECK_GT(size, 0u);
int index = -1;
while (size) {
size >>= 1;
index++;
}
return index;
}
bool FreeList::TakeSnapshot(const String& dump_base_name) {
bool did_dump_bucket_stats = false;
for (size_t i = 0; i < kBlinkPageSizeLog2; ++i) {
size_t entry_count = 0;
size_t free_size = 0;
for (FreeListEntry* entry = free_lists_[i]; entry; entry = entry->Next()) {
++entry_count;
free_size += entry->size();
}
String dump_name =
dump_base_name + String::Format("/buckets/bucket_%lu",
static_cast<unsigned long>(1 << i));
base::trace_event::MemoryAllocatorDump* bucket_dump =
BlinkGCMemoryDumpProvider::Instance()
->CreateMemoryAllocatorDumpForCurrentGC(dump_name);
bucket_dump->AddScalar("free_count", "objects", entry_count);
bucket_dump->AddScalar("free_size", "bytes", free_size);
did_dump_bucket_stats = true;
}
return did_dump_bucket_stats;
}
BasePage::BasePage(PageMemory* storage, BaseArena* arena)
: magic_(GetMagic()),
storage_(storage),
arena_(arena),
next_(nullptr),
swept_(true) {
#if DCHECK_IS_ON()
DCHECK(IsPageHeaderAddress(reinterpret_cast<Address>(this)));
#endif
}
NormalPage::NormalPage(PageMemory* storage, BaseArena* arena)
: BasePage(storage, arena), object_start_bit_map_(Payload()) {
#if DCHECK_IS_ON()
DCHECK(IsPageHeaderAddress(reinterpret_cast<Address>(this)));
#endif // DCHECK_IS_ON()
}
NormalPage::~NormalPage() {
#if DCHECK_IS_ON()
DCHECK(IsPageHeaderAddress(reinterpret_cast<Address>(this)));
#endif
}
size_t NormalPage::ObjectPayloadSizeForTesting() {
size_t object_payload_size = 0;
Address header_address = Payload();
DCHECK_NE(header_address, PayloadEnd());
do {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
if (!header->IsFree()) {
object_payload_size += header->PayloadSize();
}
DCHECK_LT(header->size(), BlinkPagePayloadSize());
header_address += header->size();
DCHECK_LE(header_address, PayloadEnd());
} while (header_address < PayloadEnd());
return object_payload_size;
}
void NormalPage::RemoveFromHeap() {
ArenaForNormalPage()->FreePage(this);
}
#if !DCHECK_IS_ON() && !defined(LEAK_SANITIZER) && !defined(ADDRESS_SANITIZER)
static void DiscardPages(Address begin, Address end) {
uintptr_t begin_address =
base::RoundUpToSystemPage(reinterpret_cast<uintptr_t>(begin));
uintptr_t end_address =
base::RoundDownToSystemPage(reinterpret_cast<uintptr_t>(end));
if (begin_address < end_address) {
base::DiscardSystemPages(reinterpret_cast<void*>(begin_address),
end_address - begin_address);
}
}
#endif
bool NormalPage::Sweep() {
object_start_bit_map()->Clear();
size_t marked_object_size = 0;
Address start_of_gap = Payload();
NormalPageArena* page_arena = ArenaForNormalPage();
for (Address header_address = start_of_gap; header_address < PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
size_t size = header->size();
DCHECK_GT(size, 0u);
DCHECK_LT(size, BlinkPagePayloadSize());
if (header->IsFree()) {
// Zero the memory in the free list header to maintain the
// invariant that memory on the free list is zero filled.
// The rest of the memory is already on the free list and is
// therefore already zero filled.
SET_MEMORY_INACCESSIBLE(header_address, size < sizeof(FreeListEntry)
? size
: sizeof(FreeListEntry));
CHECK_MEMORY_INACCESSIBLE(header_address, size);
header_address += size;
continue;
}
if (!header->IsMarked()) {
// This is a fast version of header->PayloadSize().
size_t payload_size = size - sizeof(HeapObjectHeader);
Address payload = header->Payload();
// For ASan, unpoison the object before calling the finalizer. The
// finalized object will be zero-filled and poison'ed afterwards.
// Given all other unmarked objects are poisoned, ASan will detect
// an error if the finalizer touches any other on-heap object that
// die at the same GC cycle.
ASAN_UNPOISON_MEMORY_REGION(payload, payload_size);
header->Finalize(payload, payload_size);
// This memory will be added to the freelist. Maintain the invariant
// that memory on the freelist is zero filled.
SET_MEMORY_INACCESSIBLE(header_address, size);
header_address += size;
continue;
}
if (start_of_gap != header_address) {
page_arena->AddToFreeList(start_of_gap, header_address - start_of_gap);
#if !DCHECK_IS_ON() && !defined(LEAK_SANITIZER) && !defined(ADDRESS_SANITIZER)
// Discarding pages increases page faults and may regress performance.
// So we enable this only on low-RAM devices.
if (MemoryCoordinator::IsLowEndDevice())
DiscardPages(start_of_gap + sizeof(FreeListEntry), header_address);
#endif
}
object_start_bit_map()->SetBit(header_address);
header->Unmark();
header_address += size;
marked_object_size += size;
start_of_gap = header_address;
}
// Only add the memory to the free list if the page is not completely empty
// and we are not at the end of the page. Empty pages are not added to the
// free list as the pages are removed immediately.
if (start_of_gap != Payload() && start_of_gap != PayloadEnd()) {
page_arena->AddToFreeList(start_of_gap, PayloadEnd() - start_of_gap);
#if !DCHECK_IS_ON() && !defined(LEAK_SANITIZER) && !defined(ADDRESS_SANITIZER)
if (MemoryCoordinator::IsLowEndDevice())
DiscardPages(start_of_gap + sizeof(FreeListEntry), PayloadEnd());
#endif
}
if (marked_object_size) {
page_arena->GetThreadState()->Heap().IncreaseMarkedObjectSize(
marked_object_size);
}
VerifyObjectStartBitmapIsConsistentWithPayload();
return start_of_gap == Payload();
}
void NormalPage::SweepAndCompact(CompactionContext& context) {
object_start_bit_map()->Clear();
NormalPage*& current_page = context.current_page_;
size_t& allocation_point = context.allocation_point_;
size_t marked_object_size = 0;
NormalPageArena* page_arena = ArenaForNormalPage();
#if defined(ADDRESS_SANITIZER)
bool is_vector_arena =
ThreadHeap::IsVectorArenaIndex(page_arena->ArenaIndex());
#endif
HeapCompact* compact = page_arena->GetThreadState()->Heap().Compaction();
for (Address header_address = Payload(); header_address < PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
size_t size = header->size();
DCHECK_GT(size, 0u);
DCHECK_LT(size, BlinkPagePayloadSize());
if (header->IsFree()) {
// Unpoison the freelist entry so that we
// can compact into it as wanted.
ASAN_UNPOISON_MEMORY_REGION(header_address, size);
header_address += size;
continue;
}
// This is a fast version of header->PayloadSize().
size_t payload_size = size - sizeof(HeapObjectHeader);
Address payload = header->Payload();
if (!header->IsMarked()) {
// For ASan, unpoison the object before calling the finalizer. The
// finalized object will be zero-filled and poison'ed afterwards.
// Given all other unmarked objects are poisoned, ASan will detect
// an error if the finalizer touches any other on-heap object that
// die at the same GC cycle.
ASAN_UNPOISON_MEMORY_REGION(header_address, size);
header->Finalize(payload, payload_size);
// As compaction is under way, leave the freed memory accessible
// while compacting the rest of the page. We just zap the payload
// to catch out other finalizers trying to access it.
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
FreeList::ZapFreedMemory(payload, payload_size);
#endif
header_address += size;
continue;
}
header->Unmark();
// Allocate and copy over the live object.
Address compact_frontier = current_page->Payload() + allocation_point;
if (compact_frontier + size > current_page->PayloadEnd()) {
// Can't fit on current allocation page; add remaining onto the
// freelist and advance to next available page.
//
// TODO(sof): be more clever & compact later objects into
// |currentPage|'s unused slop.
current_page->Link(context.compacted_pages_);
size_t free_size = current_page->PayloadSize() - allocation_point;
if (free_size) {
SET_MEMORY_INACCESSIBLE(compact_frontier, free_size);
current_page->ArenaForNormalPage()->AddToFreeList(compact_frontier,
free_size);
}
BasePage* next_available_page;
context.available_pages_->Unlink(&next_available_page);
current_page = reinterpret_cast<NormalPage*>(context.available_pages_);
context.available_pages_ = next_available_page;
allocation_point = 0;
compact_frontier = current_page->Payload();
}
if (LIKELY(compact_frontier != header_address)) {
#if defined(ADDRESS_SANITIZER)
// Unpoison the header + if it is a vector backing
// store object, let go of the container annotations.
// Do that by unpoisoning the payload entirely.
ASAN_UNPOISON_MEMORY_REGION(header, sizeof(HeapObjectHeader));
if (is_vector_arena)
ASAN_UNPOISON_MEMORY_REGION(payload, payload_size);
#endif
// Use a non-overlapping copy, if possible.
if (current_page == this)
memmove(compact_frontier, header_address, size);
else
memcpy(compact_frontier, header_address, size);
compact->Relocate(payload, compact_frontier + sizeof(HeapObjectHeader));
}
current_page->object_start_bit_map()->SetBit(compact_frontier);
header_address += size;
marked_object_size += size;
allocation_point += size;
DCHECK(allocation_point <= current_page->PayloadSize());
}
if (marked_object_size) {
page_arena->GetThreadState()->Heap().IncreaseMarkedObjectSize(
marked_object_size);
}
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
// Zap the unused portion, until it is either compacted into or freed.
if (current_page != this) {
FreeList::ZapFreedMemory(Payload(), PayloadSize());
} else {
FreeList::ZapFreedMemory(Payload() + allocation_point,
PayloadSize() - allocation_point);
}
#endif
}
void NormalPage::MakeConsistentForMutator() {
object_start_bit_map()->Clear();
size_t marked_object_size = 0;
Address start_of_gap = Payload();
NormalPageArena* normal_arena = ArenaForNormalPage();
for (Address header_address = Payload(); header_address < PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
size_t size = header->size();
DCHECK_LT(size, BlinkPagePayloadSize());
if (header->IsFree()) {
// Zero the memory in the free list header to maintain the
// invariant that memory on the free list is zero filled.
// The rest of the memory is already on the free list and is
// therefore already zero filled.
SET_MEMORY_INACCESSIBLE(header_address, size < sizeof(FreeListEntry)
? size
: sizeof(FreeListEntry));
CHECK_MEMORY_INACCESSIBLE(header_address, size);
header_address += size;
continue;
}
if (start_of_gap != header_address)
normal_arena->AddToFreeList(start_of_gap, header_address - start_of_gap);
if (header->IsMarked()) {
header->Unmark();
marked_object_size += size;
}
object_start_bit_map()->SetBit(header_address);
header_address += size;
start_of_gap = header_address;
DCHECK_LE(header_address, PayloadEnd());
}
if (start_of_gap != PayloadEnd())
normal_arena->AddToFreeList(start_of_gap, PayloadEnd() - start_of_gap);
if (marked_object_size) {
ArenaForNormalPage()->GetThreadState()->Heap().IncreaseMarkedObjectSize(
marked_object_size);
}
VerifyObjectStartBitmapIsConsistentWithPayload();
}
#if defined(ADDRESS_SANITIZER)
void NormalPage::PoisonUnmarkedObjects() {
for (Address header_address = Payload(); header_address < PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
DCHECK_LT(header->size(), BlinkPagePayloadSize());
// Check if a free list entry first since we cannot call
// isMarked on a free list entry.
if (header->IsFree()) {
header_address += header->size();
continue;
}
if (!header->IsMarked())
ASAN_POISON_MEMORY_REGION(header->Payload(), header->PayloadSize());
header_address += header->size();
}
}
#endif
void NormalPage::VerifyObjectStartBitmapIsConsistentWithPayload() {
#if DCHECK_IS_ON()
HeapObjectHeader* current_header =
reinterpret_cast<HeapObjectHeader*>(Payload());
object_start_bit_map()->Iterate([this,
¤t_header](Address object_address) {
const HeapObjectHeader* object_header =
reinterpret_cast<HeapObjectHeader*>(object_address);
DCHECK_EQ(object_header, current_header);
DCHECK(object_header->IsValidOrZapped());
current_header = reinterpret_cast<HeapObjectHeader*>(object_address +
object_header->size());
// Skip over allocation area.
if (reinterpret_cast<Address>(current_header) ==
ArenaForNormalPage()->CurrentAllocationPoint()) {
current_header = reinterpret_cast<HeapObjectHeader*>(
ArenaForNormalPage()->CurrentAllocationPoint() +
ArenaForNormalPage()->RemainingAllocationSize());
}
});
#endif // DCHECK_IS_ON()
}
void NormalPage::VerifyMarking() {
DCHECK(!ArenaForNormalPage()
->GetThreadState()
->Heap()
.GetStackFrameDepth()
.IsSafeToRecurse());
DCHECK(!ArenaForNormalPage()->CurrentAllocationPoint());
MarkingVerifier verifier(ArenaForNormalPage()->GetThreadState());
for (Address header_address = Payload(); header_address < PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
verifier.VerifyObject(header);
header_address += header->size();
}
}
Address ObjectStartBitmap::FindHeader(
Address address_maybe_pointing_to_the_middle_of_object) {
size_t object_offset =
address_maybe_pointing_to_the_middle_of_object - offset_;
size_t object_start_number = object_offset / kAllocationGranularity;
size_t cell_index = object_start_number / kCellSize;
#if DCHECK_IS_ON()
const size_t bitmap_size = kReservedForBitmap;
DCHECK_LT(cell_index, bitmap_size);
#endif
size_t bit = object_start_number & kCellMask;
uint8_t byte = object_start_bit_map_[cell_index] & ((1 << (bit + 1)) - 1);
while (!byte) {
DCHECK_LT(0u, cell_index);
byte = object_start_bit_map_[--cell_index];
}
int leading_zeroes = base::bits::CountLeadingZeroBits(byte);
object_start_number =
(cell_index * kCellSize) + (kCellSize - 1) - leading_zeroes;
object_offset = object_start_number * kAllocationGranularity;
return object_offset + offset_;
}
HeapObjectHeader* NormalPage::FindHeaderFromAddress(Address address) {
if (!ContainedInObjectPayload(address))
return nullptr;
if (ArenaForNormalPage()->IsInCurrentAllocationPointRegion(address))
return nullptr;
HeapObjectHeader* header = reinterpret_cast<HeapObjectHeader*>(
object_start_bit_map()->FindHeader(address));
if (header->IsFree())
return nullptr;
DCHECK_LT(0u, header->GcInfoIndex());
DCHECK_GT(header->PayloadEnd(), address);
return header;
}
void NormalPage::TakeSnapshot(base::trace_event::MemoryAllocatorDump* page_dump,
ThreadState::GCSnapshotInfo& info,
HeapSnapshotInfo& heap_info) {
HeapObjectHeader* header = nullptr;
size_t live_count = 0;
size_t dead_count = 0;
size_t free_count = 0;
size_t live_size = 0;
size_t dead_size = 0;
size_t free_size = 0;
for (Address header_address = Payload(); header_address < PayloadEnd();
header_address += header->size()) {
header = reinterpret_cast<HeapObjectHeader*>(header_address);
if (header->IsFree()) {
free_count++;
free_size += header->size();
} else if (header->IsMarked()) {
live_count++;
live_size += header->size();
uint32_t gc_info_index = header->GcInfoIndex();
info.live_count[gc_info_index]++;
info.live_size[gc_info_index] += header->size();
} else {
dead_count++;
dead_size += header->size();
uint32_t gc_info_index = header->GcInfoIndex();
info.dead_count[gc_info_index]++;
info.dead_size[gc_info_index] += header->size();
}
}
page_dump->AddScalar("live_count", "objects", live_count);
page_dump->AddScalar("dead_count", "objects", dead_count);
page_dump->AddScalar("free_count", "objects", free_count);
page_dump->AddScalar("live_size", "bytes", live_size);
page_dump->AddScalar("dead_size", "bytes", dead_size);
page_dump->AddScalar("free_size", "bytes", free_size);
heap_info.free_size += free_size;
heap_info.free_count += free_count;
}
#if DCHECK_IS_ON()
bool NormalPage::Contains(Address addr) {
Address blink_page_start = RoundToBlinkPageStart(GetAddress());
// Page is at aligned address plus guard page size.
DCHECK_EQ(blink_page_start, GetAddress() - kBlinkGuardPageSize);
return blink_page_start <= addr && addr < blink_page_start + kBlinkPageSize;
}
#endif
LargeObjectPage::LargeObjectPage(PageMemory* storage,
BaseArena* arena,
size_t object_size)
: BasePage(storage, arena),
object_size_(object_size)
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
,
is_vector_backing_page_(false)
#endif
{
}
size_t LargeObjectPage::ObjectPayloadSizeForTesting() {
return PayloadSize();
}
void LargeObjectPage::RemoveFromHeap() {
static_cast<LargeObjectArena*>(Arena())->FreeLargeObjectPage(this);
}
bool LargeObjectPage::Sweep() {
if (!ObjectHeader()->IsMarked()) {
return true;
}
ObjectHeader()->Unmark();
Arena()->GetThreadState()->Heap().IncreaseMarkedObjectSize(size());
return false;
}
void LargeObjectPage::MakeConsistentForMutator() {
HeapObjectHeader* header = ObjectHeader();
if (header->IsMarked()) {
header->Unmark();
Arena()->GetThreadState()->Heap().IncreaseMarkedObjectSize(size());
}
}
#if defined(ADDRESS_SANITIZER)
void LargeObjectPage::PoisonUnmarkedObjects() {
HeapObjectHeader* header = ObjectHeader();
if (!header->IsMarked())
ASAN_POISON_MEMORY_REGION(header->Payload(), header->PayloadSize());
}
#endif
void LargeObjectPage::TakeSnapshot(
base::trace_event::MemoryAllocatorDump* page_dump,
ThreadState::GCSnapshotInfo& info,
HeapSnapshotInfo&) {
size_t live_size = 0;
size_t dead_size = 0;
size_t live_count = 0;
size_t dead_count = 0;
HeapObjectHeader* header = ObjectHeader();
uint32_t gc_info_index = header->GcInfoIndex();
size_t payload_size = header->PayloadSize();
if (header->IsMarked()) {
live_count = 1;
live_size += payload_size;
info.live_count[gc_info_index]++;
info.live_size[gc_info_index] += payload_size;
} else {
dead_count = 1;
dead_size += payload_size;
info.dead_count[gc_info_index]++;
info.dead_size[gc_info_index] += payload_size;
}
page_dump->AddScalar("live_count", "objects", live_count);
page_dump->AddScalar("dead_count", "objects", dead_count);
page_dump->AddScalar("live_size", "bytes", live_size);
page_dump->AddScalar("dead_size", "bytes", dead_size);
}
#if DCHECK_IS_ON()
bool LargeObjectPage::Contains(Address object) {
return RoundToBlinkPageStart(GetAddress()) <= object &&
object < RoundToBlinkPageEnd(GetAddress() + size());
}
#endif
ALWAYS_INLINE uint32_t RotateLeft16(uint32_t x) {
#if defined(COMPILER_MSVC)
return _lrotr(x, 16);
#else
// http://blog.regehr.org/archives/1063
return (x << 16) | (x >> (-16 & 31));
#endif
}
uint32_t ComputeRandomMagic() {
// Ignore C4319: It is OK to 0-extend into the high-order bits of the uintptr_t
// on 64-bit, in this case.
#if defined(COMPILER_MSVC)
#pragma warning(push)
#pragma warning(disable : 4319)
#endif
// Get an ASLR'd address from one of our own DLLs/.sos, and then another from
// a system DLL/.so:
const uint32_t random1 = ~(RotateLeft16(reinterpret_cast<uintptr_t>(
base::trace_event::MemoryAllocatorDump::kNameSize)));
#if defined(OS_WIN)
uintptr_t random2 = reinterpret_cast<uintptr_t>(::ReadFile);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
uintptr_t random2 = reinterpret_cast<uintptr_t>(::read);
#else
#error platform not supported
#endif
#if defined(ARCH_CPU_64_BITS)
static_assert(sizeof(uintptr_t) == sizeof(uint64_t),
"uintptr_t is not uint64_t");
// Shift in some high-order bits.
random2 = random2 >> 16;
#elif defined(ARCH_CPU_32_BITS)
// Although we don't use heap metadata canaries on 32-bit due to memory
// pressure, keep this code around just in case we do, someday.
static_assert(sizeof(uintptr_t) == sizeof(uint32_t),
"uintptr_t is not uint32_t");
#else
#error architecture not supported
#endif
random2 = ~(RotateLeft16(random2));
// Combine the 2 values:
const uint32_t random = (random1 & 0x0000FFFFUL) |
(static_cast<uint32_t>(random2) & 0xFFFF0000UL);
#if defined(COMPILER_MSVC)
#pragma warning(pop)
#endif
return random;
}
#if defined(ARCH_CPU_64_BITS)
// Returns a random magic value.
uint32_t HeapObjectHeader::GetMagic() {
static const uint32_t magic = ComputeRandomMagic() ^ 0x6e0b6ead;
return magic;
}
#endif // defined(ARCH_CPU_64_BITS)
uint32_t BasePage::GetMagic() {
static const uint32_t magic = ComputeRandomMagic() ^ 0xba5e4a9e;
return magic;
}
} // namespace blink
|