1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_
#include <stdint.h>
#include "base/bits.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/heap/blink_gc.h"
#include "third_party/blink/renderer/platform/heap/gc_info.h"
#include "third_party/blink/renderer/platform/heap/thread_state.h"
#include "third_party/blink/renderer/platform/heap/visitor.h"
#include "third_party/blink/renderer/platform/platform_export.h"
#include "third_party/blink/renderer/platform/wtf/address_sanitizer.h"
#include "third_party/blink/renderer/platform/wtf/allocator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partitions.h"
#include "third_party/blink/renderer/platform/wtf/assertions.h"
#include "third_party/blink/renderer/platform/wtf/container_annotations.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
namespace base {
namespace trace_event {
class MemoryAllocatorDump;
} // namespace trace_event
} // namespace base
namespace blink {
// TODO(palmer): Document the reason for 17.
constexpr size_t kBlinkPageSizeLog2 = 17;
constexpr size_t kBlinkPageSize = 1 << kBlinkPageSizeLog2;
constexpr size_t kBlinkPageOffsetMask = kBlinkPageSize - 1;
constexpr size_t kBlinkPageBaseMask = ~kBlinkPageOffsetMask;
// We allocate pages at random addresses but in groups of kBlinkPagesPerRegion
// at a given random address. We group pages to not spread out too much over the
// address space which would blow away the page tables and lead to bad
// performance.
constexpr size_t kBlinkPagesPerRegion = 10;
// TODO(nya): Replace this with something like #if ENABLE_NACL.
#if 0
// NaCl's system page size is 64 KiB. This causes a problem in Oilpan's heap
// layout because Oilpan allocates two guard pages for each Blink page (whose
// size is kBlinkPageSize = 2^17 = 128 KiB). So we don't use guard pages in
// NaCl.
constexpr size_t kBlinkGuardPageSize = 0;
#else
constexpr size_t kBlinkGuardPageSize = base::kSystemPageSize;
#endif
// Double precision floats are more efficient when 8-byte aligned, so we 8-byte
// align all allocations (even on 32 bit systems).
static_assert(8 == sizeof(double), "We expect sizeof(double) to be 8");
constexpr size_t kAllocationGranularity = sizeof(double);
constexpr size_t kAllocationMask = kAllocationGranularity - 1;
constexpr size_t kMaxHeapObjectSizeLog2 = 27;
constexpr size_t kMaxHeapObjectSize = 1 << kMaxHeapObjectSizeLog2;
constexpr size_t kLargeObjectSizeThreshold = kBlinkPageSize / 2;
// A zap value used for freed memory that is allowed to be added to the free
// list in the next call to AddToFreeList.
constexpr uint8_t kReuseAllowedZapValue = 0x2a;
// A zap value used for freed memory that is forbidden to be added to the free
// list in the next call to AddToFreeList.
constexpr uint8_t kReuseForbiddenZapValue = 0x2c;
// In non-production builds, memory is zapped when it's freed. The zapped memory
// is zeroed out when the memory is reused in ThreadHeap::AllocateObject.
//
// In production builds, memory is not zapped (for performance). The memory is
// just zeroed out when it is added to the free list.
#if defined(MEMORY_SANITIZER)
// TODO(kojii): We actually need __msan_poison/unpoison here, but it'll be
// added later.
#define SET_MEMORY_INACCESSIBLE(address, size) \
FreeList::ZapFreedMemory(address, size);
#define SET_MEMORY_ACCESSIBLE(address, size) memset((address), 0, (size))
#define CHECK_MEMORY_INACCESSIBLE(address, size) \
ASAN_UNPOISON_MEMORY_REGION(address, size); \
FreeList::CheckFreedMemoryIsZapped(address, size); \
ASAN_POISON_MEMORY_REGION(address, size)
#elif DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER)
#define SET_MEMORY_INACCESSIBLE(address, size) \
FreeList::ZapFreedMemory(address, size); \
ASAN_POISON_MEMORY_REGION(address, size)
#define SET_MEMORY_ACCESSIBLE(address, size) \
ASAN_UNPOISON_MEMORY_REGION(address, size); \
memset((address), 0, (size))
#define CHECK_MEMORY_INACCESSIBLE(address, size) \
ASAN_UNPOISON_MEMORY_REGION(address, size); \
FreeList::CheckFreedMemoryIsZapped(address, size); \
ASAN_POISON_MEMORY_REGION(address, size)
#else
#define SET_MEMORY_INACCESSIBLE(address, size) memset((address), 0, (size))
#define SET_MEMORY_ACCESSIBLE(address, size) \
do { \
} while (false)
#define CHECK_MEMORY_INACCESSIBLE(address, size) \
do { \
} while (false)
#endif
class NormalPageArena;
class PageMemory;
class BaseArena;
// Returns a random value.
//
// The implementation gets its randomness from the locations of 2 independent
// sources of address space layout randomization: a function in a Chrome
// executable image, and a function in an external DLL/so. This implementation
// should be fast and small, and should have the benefit of requiring
// attackers to discover and use 2 independent weak infoleak bugs, or 1
// arbitrary infoleak bug (used twice).
uint32_t ComputeRandomMagic();
// HeapObjectHeader is a 64-bit (64-bit platforms) or 32-bit (32-bit platforms)
// object that has the following layout:
//
// | random magic value (32 bits) | <- present on 64-bit platforms only
// | gc_info_index (14 bits) |
// | DOM mark bit (1 bit) |
// | size (14 bits) |
// | dead bit (1 bit) |
// | freed bit (1 bit) |
// | mark bit (1 bit) |
//
// - For non-large objects, 14 bits are enough for |size| because the Blink page
// size is 2^kBlinkPageSizeLog2 (kBlinkPageSizeLog2 = 17) bytes, and each
// object is guaranteed to be aligned on a kAllocationGranularity-byte
// boundary.
// - For large objects, |size| is 0. The actual size of a large object is
// stored in |LargeObjectPage::PayloadSize()|.
// - 1 bit used to mark DOM trees for V8.
// - 14 bits are enough for |gc_info_index| because there are fewer than 2^14
// types in Blink.
constexpr size_t kHeaderWrapperMarkBitMask = 1u << kBlinkPageSizeLog2;
constexpr size_t kHeaderGCInfoIndexShift = kBlinkPageSizeLog2 + 1;
constexpr size_t kHeaderGCInfoIndexMask = (static_cast<size_t>((1 << 14) - 1))
<< kHeaderGCInfoIndexShift;
constexpr size_t kHeaderSizeMask = (static_cast<size_t>((1 << 14) - 1)) << 3;
constexpr size_t kHeaderMarkBitMask = 1;
constexpr size_t kHeaderFreedBitMask = 2;
constexpr size_t kLargeObjectSizeInHeader = 0;
constexpr size_t kGcInfoIndexForFreeListHeader = 0;
constexpr size_t kNonLargeObjectPageSizeMax = 1 << kBlinkPageSizeLog2;
static_assert(
kNonLargeObjectPageSizeMax >= kBlinkPageSize,
"max size supported by HeapObjectHeader must at least be kBlinkPageSize");
class PLATFORM_EXPORT HeapObjectHeader {
DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
public:
enum HeaderLocation { kNormalPage, kLargePage };
// If |gc_info_index| is 0, this header is interpreted as a free list header.
NO_SANITIZE_ADDRESS
inline HeapObjectHeader(size_t, size_t, HeaderLocation);
NO_SANITIZE_ADDRESS bool IsFree() const {
return encoded_ & kHeaderFreedBitMask;
}
size_t size() const;
NO_SANITIZE_ADDRESS uint32_t GcInfoIndex() const {
return (encoded_ & kHeaderGCInfoIndexMask) >> kHeaderGCInfoIndexShift;
}
NO_SANITIZE_ADDRESS void SetSize(size_t size) {
DCHECK_LT(size, kNonLargeObjectPageSizeMax);
CheckHeader();
encoded_ = static_cast<uint32_t>(size) | (encoded_ & ~kHeaderSizeMask);
}
bool IsWrapperHeaderMarked() const;
void MarkWrapperHeader();
void UnmarkWrapperHeader();
bool IsMarked() const;
void Mark();
void Unmark();
bool TryMark();
// The payload starts directly after the HeapObjectHeader, and the payload
// size does not include the sizeof(HeapObjectHeader).
Address Payload();
size_t PayloadSize();
Address PayloadEnd();
void Finalize(Address, size_t);
static HeapObjectHeader* FromPayload(const void*);
// Some callers formerly called |FromPayload| only for its side-effect of
// calling |CheckHeader| (which is now private). This function does that, but
// its explanatory name makes the intention at the call sites easier to
// understand, and is public.
static void CheckFromPayload(const void*);
// Returns true if magic number is valid.
bool IsValid() const;
// Returns true if magic number is valid or zapped.
bool IsValidOrZapped() const;
// The following values are used when zapping free list entries.
// Regular zapping value.
static const uint32_t kZappedMagic = 0xDEAD4321;
// On debug and sanitizer builds the zap values differ, indicating when free
// list entires are allowed to be reused.
static const uint32_t kZappedMagicAllowed = 0x2a2a2a2a;
static const uint32_t kZappedMagicForbidden = 0x2c2c2c2c;
protected:
#if DCHECK_IS_ON() && defined(ARCH_CPU_64_BITS)
// Zap |m_magic| with a new magic number that means there was once an object
// allocated here, but it was freed because nobody marked it during GC.
void ZapMagic();
#endif
private:
void CheckHeader() const;
#if defined(ARCH_CPU_64_BITS)
// Returns a random magic value.
static uint32_t GetMagic();
uint32_t magic_;
#endif // defined(ARCH_CPU_64_BITS)
uint32_t encoded_;
};
class FreeListEntry final : public HeapObjectHeader {
public:
NO_SANITIZE_ADDRESS
explicit FreeListEntry(size_t size)
: HeapObjectHeader(size,
kGcInfoIndexForFreeListHeader,
HeapObjectHeader::kNormalPage),
next_(nullptr) {
#if DCHECK_IS_ON() && defined(ARCH_CPU_64_BITS)
DCHECK_GE(size, sizeof(HeapObjectHeader));
ZapMagic();
#endif
}
Address GetAddress() { return reinterpret_cast<Address>(this); }
NO_SANITIZE_ADDRESS
void Unlink(FreeListEntry** previous_next) {
*previous_next = next_;
next_ = nullptr;
}
NO_SANITIZE_ADDRESS
void Link(FreeListEntry** previous_next) {
next_ = *previous_next;
*previous_next = this;
}
NO_SANITIZE_ADDRESS
FreeListEntry* Next() const { return next_; }
NO_SANITIZE_ADDRESS
void Append(FreeListEntry* next) {
DCHECK(!next_);
next_ = next;
}
private:
FreeListEntry* next_;
};
// Blink heap pages are set up with a guard page before and after the payload.
inline size_t BlinkPagePayloadSize() {
return kBlinkPageSize - 2 * kBlinkGuardPageSize;
}
// Blink heap pages are aligned to the Blink heap page size. Therefore, the
// start of a Blink page can be obtained by rounding down to the Blink page
// size.
inline Address RoundToBlinkPageStart(Address address) {
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) &
kBlinkPageBaseMask);
}
inline Address RoundToBlinkPageEnd(Address address) {
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address - 1) &
kBlinkPageBaseMask) +
kBlinkPageSize;
}
// Masks an address down to the enclosing Blink page base address.
inline Address BlinkPageAddress(Address address) {
return reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address) &
kBlinkPageBaseMask);
}
inline bool VTableInitialized(void* object_pointer) {
return !!(*reinterpret_cast<Address*>(object_pointer));
}
#if DCHECK_IS_ON()
// Sanity check for a page header address: the address of the page header should
// be 1 OS page size away from being Blink page size-aligned.
inline bool IsPageHeaderAddress(Address address) {
return !((reinterpret_cast<uintptr_t>(address) & kBlinkPageOffsetMask) -
kBlinkGuardPageSize);
}
#endif
// |BasePage| is a base class for |NormalPage| and |LargeObjectPage|.
//
// - |NormalPage| is a page whose size is |kBlinkPageSize|. A |NormalPage| can
// contain multiple objects. An object whose size is smaller than
// |kLargeObjectSizeThreshold| is stored in a |NormalPage|.
//
// - |LargeObjectPage| is a page that contains only one object. The object size
// is arbitrary. An object whose size is larger than |kBlinkPageSize| is
// stored as a single project in |LargeObjectPage|.
//
// Note: An object whose size is between |kLargeObjectSizeThreshold| and
// |kBlinkPageSize| can go to either of |NormalPage| or |LargeObjectPage|.
class BasePage {
DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
public:
BasePage(PageMemory*, BaseArena*);
virtual ~BasePage() = default;
void Link(BasePage** previous_next) {
next_ = *previous_next;
*previous_next = this;
}
void Unlink(BasePage** previous_next) {
*previous_next = next_;
next_ = nullptr;
}
BasePage* Next() const { return next_; }
// Virtual methods are slow. So performance-sensitive methods should be
// defined as non-virtual methods on |NormalPage| and |LargeObjectPage|. The
// following methods are not performance-sensitive.
virtual size_t ObjectPayloadSizeForTesting() = 0;
virtual void RemoveFromHeap() = 0;
// Sweeps a page. Returns true when that page is empty and false otherwise.
// Does not create free list entries for empty pages.
virtual bool Sweep() = 0;
virtual void MakeConsistentForMutator() = 0;
#if defined(ADDRESS_SANITIZER)
virtual void PoisonUnmarkedObjects() = 0;
#endif
class HeapSnapshotInfo {
STACK_ALLOCATED();
public:
size_t free_count = 0;
size_t free_size = 0;
};
virtual void TakeSnapshot(base::trace_event::MemoryAllocatorDump*,
ThreadState::GCSnapshotInfo&,
HeapSnapshotInfo&) = 0;
#if DCHECK_IS_ON()
virtual bool Contains(Address) = 0;
#endif
virtual size_t size() = 0;
virtual bool IsLargeObjectPage() { return false; }
Address GetAddress() { return reinterpret_cast<Address>(this); }
PageMemory* Storage() const { return storage_; }
BaseArena* Arena() const { return arena_; }
// Returns true if this page has been swept by the ongoing lazy sweep.
bool HasBeenSwept() const { return swept_; }
void MarkAsSwept() {
DCHECK(!swept_);
swept_ = true;
}
void MarkAsUnswept() {
DCHECK(swept_);
swept_ = false;
}
// Returns true if magic number is valid.
bool IsValid() const;
virtual void VerifyMarking() = 0;
private:
// Returns a random magic value.
PLATFORM_EXPORT static uint32_t GetMagic();
uint32_t const magic_;
PageMemory* const storage_;
BaseArena* const arena_;
BasePage* next_;
// Track the sweeping state of a page. Set to false at the start of a sweep,
// true upon completion of lazy sweeping.
bool swept_;
friend class BaseArena;
};
// A bitmap for recording object starts. Objects have to be allocated at
// minimum granularity of kGranularity.
//
// Depends on internals such as:
// - kBlinkPageSize
// - kAllocationGranularity
class PLATFORM_EXPORT ObjectStartBitmap {
DISALLOW_NEW();
public:
// Granularity of addresses added to the bitmap.
static constexpr size_t Granularity() { return kAllocationGranularity; }
// Maximum number of entries in the bitmap.
static constexpr size_t MaxEntries() {
return kReservedForBitmap * kCellSize;
}
explicit ObjectStartBitmap(Address offset);
// Finds an object header based on a
// address_maybe_pointing_to_the_middle_of_object. Will search for an object
// start in decreasing address order.
Address FindHeader(Address address_maybe_pointing_to_the_middle_of_object);
inline void SetBit(Address);
inline void ClearBit(Address);
inline bool CheckBit(Address) const;
// Iterates all object starts recorded in the bitmap.
//
// The callback is of type
// void(Address)
// and is passed the object start address as parameter.
template <typename Callback>
inline void Iterate(Callback) const;
// Clear the object start bitmap.
void Clear();
private:
static const size_t kCellSize = sizeof(uint8_t) * 8;
static const size_t kCellMask = sizeof(uint8_t) * 8 - 1;
static const size_t kBitmapSize =
(kBlinkPageSize + ((kCellSize * kAllocationGranularity) - 1)) /
(kCellSize * kAllocationGranularity);
static const size_t kReservedForBitmap =
((kBitmapSize + kAllocationMask) & ~kAllocationMask);
inline void ObjectStartIndexAndBit(Address, size_t*, size_t*) const;
const Address offset_;
// The bitmap contains a bit for every kGranularity aligned address on a
// a NormalPage, i.e., for a page of size kBlinkPageSize.
uint8_t object_start_bit_map_[kReservedForBitmap];
};
class PLATFORM_EXPORT NormalPage final : public BasePage {
public:
NormalPage(PageMemory*, BaseArena*);
~NormalPage() override;
Address Payload() { return GetAddress() + PageHeaderSize(); }
size_t PayloadSize() {
return (BlinkPagePayloadSize() - PageHeaderSize()) & ~kAllocationMask;
}
Address PayloadEnd() { return Payload() + PayloadSize(); }
bool ContainedInObjectPayload(Address address) {
return Payload() <= address && address < PayloadEnd();
}
size_t ObjectPayloadSizeForTesting() override;
void RemoveFromHeap() override;
bool Sweep() override;
void MakeConsistentForMutator() override;
#if defined(ADDRESS_SANITIZER)
void PoisonUnmarkedObjects() override;
#endif
void TakeSnapshot(base::trace_event::MemoryAllocatorDump*,
ThreadState::GCSnapshotInfo&,
HeapSnapshotInfo&) override;
#if DCHECK_IS_ON()
// Returns true for the whole |kBlinkPageSize| page that the page is on, even
// for the header, and the unmapped guard page at the start. That ensures the
// result can be used to populate the negative page cache.
bool Contains(Address) override;
#endif
size_t size() override { return kBlinkPageSize; }
static size_t PageHeaderSize() {
// Compute the amount of padding we have to add to a header to make the size
// of the header plus the padding a multiple of 8 bytes.
size_t padding_size =
(sizeof(NormalPage) + kAllocationGranularity -
(sizeof(HeapObjectHeader) % kAllocationGranularity)) %
kAllocationGranularity;
return sizeof(NormalPage) + padding_size;
}
inline NormalPageArena* ArenaForNormalPage() const;
// Context object holding the state of the arena page compaction pass, passed
// in when compacting individual pages.
class CompactionContext {
STACK_ALLOCATED();
public:
// Page compacting into.
NormalPage* current_page_ = nullptr;
// Offset into |current_page_| to the next free address.
size_t allocation_point_ = 0;
// Chain of available pages to use for compaction. Page compaction picks the
// next one when the current one is exhausted.
BasePage* available_pages_ = nullptr;
// Chain of pages that have been compacted. Page compaction will add
// compacted pages once the current one becomes exhausted.
BasePage** compacted_pages_ = nullptr;
};
void SweepAndCompact(CompactionContext&);
// Object start bitmap of this page.
ObjectStartBitmap* object_start_bit_map() { return &object_start_bit_map_; }
// Verifies that the object start bitmap only contains a bit iff the object
// is also reachable through iteration on the page.
void VerifyObjectStartBitmapIsConsistentWithPayload();
// Uses the object_start_bit_map_ to find an object for a given address. The
// returned header is either nullptr, indicating that no object could be
// found, or it is pointing to valid object or free list entry.
HeapObjectHeader* FindHeaderFromAddress(Address);
void VerifyMarking() override;
private:
ObjectStartBitmap object_start_bit_map_;
};
// Large allocations are allocated as separate objects and linked in a list.
//
// In order to use the same memory allocation routines for everything allocated
// in the heap, large objects are considered heap pages containing only one
// object.
class LargeObjectPage final : public BasePage {
public:
static size_t PageHeaderSize() {
// Compute the amount of padding we have to add to a header to make the size
// of the header plus the padding a multiple of 8 bytes.
size_t padding_size =
(sizeof(LargeObjectPage) + kAllocationGranularity -
(sizeof(HeapObjectHeader) % kAllocationGranularity)) %
kAllocationGranularity;
return sizeof(LargeObjectPage) + padding_size;
}
LargeObjectPage(PageMemory*, BaseArena*, size_t);
// LargeObjectPage has the following memory layout:
// this -> +------------------+
// | Header | PageHeaderSize()
// ObjectHeader() -> +------------------+
// | HeapObjectHeader | sizeof(HeapObjectHeader)
// Payload() -> +------------------+
// | Object payload | PayloadSize()
// | |
// PayloadEnd() -> +------------------+
//
// ObjectSize(): PayloadSize() + sizeof(HeapObjectHeader)
// size(): ObjectSize() + PageHeaderSize()
HeapObjectHeader* ObjectHeader() {
Address header_address = GetAddress() + PageHeaderSize();
return reinterpret_cast<HeapObjectHeader*>(header_address);
}
// Returns the size of the page that is allocatable for objects. This differs
// from PayloadSize() as it also includes the HeapObjectHeader.
size_t ObjectSize() const { return object_size_; }
// Returns the size of the page including the header.
size_t size() override { return PageHeaderSize() + object_size_; }
// Returns the payload start of the underlying object.
Address Payload() { return ObjectHeader()->Payload(); }
// Returns the payload size of the underlying object.
size_t PayloadSize() { return object_size_ - sizeof(HeapObjectHeader); }
// Points to the payload end of the underlying object.
Address PayloadEnd() { return Payload() + PayloadSize(); }
bool ContainedInObjectPayload(Address address) {
return Payload() <= address && address < PayloadEnd();
}
size_t ObjectPayloadSizeForTesting() override;
void RemoveFromHeap() override;
bool Sweep() override;
void MakeConsistentForMutator() override;
void TakeSnapshot(base::trace_event::MemoryAllocatorDump*,
ThreadState::GCSnapshotInfo&,
HeapSnapshotInfo&) override;
bool IsLargeObjectPage() override { return true; }
void VerifyMarking() override {}
#if defined(ADDRESS_SANITIZER)
void PoisonUnmarkedObjects() override;
#endif
#if DCHECK_IS_ON()
// Returns true for any address that is on one of the pages that this large
// object uses. That ensures that we can use a negative result to populate the
// negative page cache.
bool Contains(Address) override;
#endif
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
void SetIsVectorBackingPage() { is_vector_backing_page_ = true; }
bool IsVectorBackingPage() const { return is_vector_backing_page_; }
#endif
private:
// The size of the underlying object including HeapObjectHeader.
size_t object_size_;
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
bool is_vector_backing_page_;
#endif
};
class FreeList {
DISALLOW_NEW();
public:
FreeList();
void AddToFreeList(Address, size_t);
void Clear();
// Returns a bucket number for inserting a |FreeListEntry| of a given size.
// All entries in the given bucket, n, have size >= 2^n.
static int BucketIndexForSize(size_t);
// Returns true if the freelist snapshot is captured.
bool TakeSnapshot(const String& dump_base_name);
#if DCHECK_IS_ON() || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
static void GetAllowedAndForbiddenCounts(Address, size_t, size_t&, size_t&);
static void ZapFreedMemory(Address, size_t);
static void CheckFreedMemoryIsZapped(Address, size_t);
#endif
private:
int biggest_free_list_index_;
// All |FreeListEntry|s in the nth list have size >= 2^n.
FreeListEntry* free_lists_[kBlinkPageSizeLog2];
size_t FreeListSize() const;
friend class NormalPageArena;
};
// Each thread has a number of thread arenas (e.g., Generic arenas, typed arenas
// for |Node|, arenas for collection backings, etc.) and |BaseArena| represents
// each thread arena.
//
// |BaseArena| is a parent class of |NormalPageArena| and |LargeObjectArena|.
// |NormalPageArena| represents a part of a heap that contains |NormalPage|s,
// and |LargeObjectArena| represents a part of a heap that contains
// |LargeObjectPage|s.
class PLATFORM_EXPORT BaseArena {
USING_FAST_MALLOC(BaseArena);
public:
BaseArena(ThreadState*, int);
virtual ~BaseArena();
void RemoveAllPages();
void TakeSnapshot(const String& dump_base_name, ThreadState::GCSnapshotInfo&);
#if DCHECK_IS_ON()
BasePage* FindPageFromAddress(Address);
#endif
virtual void TakeFreelistSnapshot(const String& dump_base_name) {}
virtual void ClearFreeLists() {}
virtual void MakeIterable() {}
virtual void MakeConsistentForGC();
void MakeConsistentForMutator();
#if DCHECK_IS_ON()
virtual bool IsConsistentForGC() = 0;
#endif
size_t ObjectPayloadSizeForTesting();
void PrepareForSweep();
#if defined(ADDRESS_SANITIZER)
void PoisonArena();
#endif
Address LazySweep(size_t, size_t gc_info_index);
void SweepUnsweptPage();
// Returns true if we have swept all pages within the deadline. Returns false
// otherwise.
bool LazySweepWithDeadline(TimeTicks deadline);
void CompleteSweep();
ThreadState* GetThreadState() { return thread_state_; }
int ArenaIndex() const { return index_; }
Address AllocateLargeObject(size_t allocation_size, size_t gc_info_index);
bool WillObjectBeLazilySwept(BasePage*, void*) const;
virtual void VerifyObjectStartBitmap(){};
virtual void VerifyMarking(){};
protected:
bool SweepingCompleted() const { return !first_unswept_page_; }
BasePage* first_page_;
BasePage* first_unswept_page_;
private:
virtual Address LazySweepPages(size_t, size_t gc_info_index) = 0;
ThreadState* thread_state_;
// Index into the page pools. This is used to ensure that the pages of the
// same type go into the correct page pool and thus avoid type confusion.
//
// TODO(palmer): Should this be size_t?
int index_;
};
class PLATFORM_EXPORT NormalPageArena final : public BaseArena {
public:
NormalPageArena(ThreadState*, int index);
void AddToFreeList(Address address, size_t size) {
#if DCHECK_IS_ON()
DCHECK(FindPageFromAddress(address));
// TODO(palmer): Do we need to handle about integer overflow here (and in
// similar expressions elsewhere)?
DCHECK(FindPageFromAddress(address + size - 1));
#endif
free_list_.AddToFreeList(address, size);
}
void ClearFreeLists() override;
void MakeIterable() override;
#if DCHECK_IS_ON()
bool IsConsistentForGC() override;
bool PagesToBeSweptContains(Address);
#endif
void TakeFreelistSnapshot(const String& dump_base_name) override;
Address AllocateObject(size_t allocation_size, size_t gc_info_index);
void FreePage(NormalPage*);
void PromptlyFreeObject(HeapObjectHeader*);
void PromptlyFreeObjectInFreeList(HeapObjectHeader*, size_t);
bool ExpandObject(HeapObjectHeader*, size_t);
bool ShrinkObject(HeapObjectHeader*, size_t);
size_t promptly_freed_size() const { return promptly_freed_size_; }
bool IsObjectAllocatedAtAllocationPoint(HeapObjectHeader* header) {
return header->PayloadEnd() == current_allocation_point_;
}
bool IsLazySweeping() const { return is_lazy_sweeping_; }
void SetIsLazySweeping(bool sweeping) { is_lazy_sweeping_ = sweeping; }
size_t ArenaSize();
size_t FreeListSize();
void SweepAndCompact();
void VerifyObjectStartBitmap() override;
void VerifyMarking() override;
Address CurrentAllocationPoint() const { return current_allocation_point_; }
bool IsInCurrentAllocationPointRegion(Address address) const {
return HasCurrentAllocationArea() &&
(CurrentAllocationPoint() <= address) &&
(address < (CurrentAllocationPoint() + RemainingAllocationSize()));
}
size_t RemainingAllocationSize() const { return remaining_allocation_size_; }
void MakeConsistentForGC() override;
private:
void AllocatePage();
Address OutOfLineAllocate(size_t allocation_size, size_t gc_info_index);
Address AllocateFromFreeList(size_t, size_t gc_info_index);
Address LazySweepPages(size_t, size_t gc_info_index) override;
bool HasCurrentAllocationArea() const {
return CurrentAllocationPoint() && RemainingAllocationSize();
}
void SetAllocationPoint(Address, size_t);
void SetRemainingAllocationSize(size_t);
void UpdateRemainingAllocationSize();
FreeList free_list_;
Address current_allocation_point_;
size_t remaining_allocation_size_;
size_t last_remaining_allocation_size_;
// The size of promptly freed objects in the heap. This counter is set to
// zero before sweeping when clearing the free list and after coalescing.
// It will increase for promptly freed objects on already swept pages.
size_t promptly_freed_size_;
bool is_lazy_sweeping_;
};
class LargeObjectArena final : public BaseArena {
public:
LargeObjectArena(ThreadState*, int index);
Address AllocateLargeObjectPage(size_t, size_t gc_info_index);
void FreeLargeObjectPage(LargeObjectPage*);
#if DCHECK_IS_ON()
bool IsConsistentForGC() override { return true; }
#endif
private:
Address DoAllocateLargeObjectPage(size_t, size_t gc_info_index);
Address LazySweepPages(size_t, size_t gc_info_index) override;
};
// Mask an address down to the enclosing Oilpan heap base page. All Oilpan heap
// pages are aligned at |kBlinkPageBase| plus the size of a guard page. This
// will work only for 1) a pointer pointing to a non-large object and 2) a
// pointer pointing to the beginning of a large object.
//
// FIXME: Remove PLATFORM_EXPORT once we get a proper public interface to our
// typed arenas. This is only exported to enable tests in HeapTest.cpp.
PLATFORM_EXPORT ALWAYS_INLINE BasePage* PageFromObject(const void* object) {
Address address = reinterpret_cast<Address>(const_cast<void*>(object));
BasePage* page = reinterpret_cast<BasePage*>(BlinkPageAddress(address) +
kBlinkGuardPageSize);
// Page must have a valid magic.
DCHECK(page->IsValid());
#if DCHECK_IS_ON()
DCHECK(page->Contains(address));
#endif
return page;
}
NO_SANITIZE_ADDRESS inline size_t HeapObjectHeader::size() const {
size_t result = encoded_ & kHeaderSizeMask;
// Large objects should not refer to header->size() but use
// LargeObjectPage::PayloadSize().
DCHECK(result != kLargeObjectSizeInHeader);
DCHECK(!PageFromObject(this)->IsLargeObjectPage());
return result;
}
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsValid() const {
#if defined(ARCH_CPU_64_BITS)
return GetMagic() == magic_;
#else
return true;
#endif
}
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsValidOrZapped() const {
#if defined(ARCH_CPU_64_BITS)
return IsValid() || kZappedMagic == magic_ || kZappedMagicAllowed == magic_ ||
kZappedMagicForbidden == magic_;
#else
return true;
#endif
}
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::CheckHeader() const {
#if defined(ARCH_CPU_64_BITS)
CHECK(IsValid());
#endif
}
inline Address HeapObjectHeader::Payload() {
return reinterpret_cast<Address>(this) + sizeof(HeapObjectHeader);
}
inline Address HeapObjectHeader::PayloadEnd() {
return reinterpret_cast<Address>(this) + size();
}
NO_SANITIZE_ADDRESS inline size_t HeapObjectHeader::PayloadSize() {
CheckHeader();
size_t size = encoded_ & kHeaderSizeMask;
if (UNLIKELY(size == kLargeObjectSizeInHeader)) {
DCHECK(PageFromObject(this)->IsLargeObjectPage());
return static_cast<LargeObjectPage*>(PageFromObject(this))->PayloadSize();
}
DCHECK(!PageFromObject(this)->IsLargeObjectPage());
return size - sizeof(HeapObjectHeader);
}
inline HeapObjectHeader* HeapObjectHeader::FromPayload(const void* payload) {
Address addr = reinterpret_cast<Address>(const_cast<void*>(payload));
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(addr - sizeof(HeapObjectHeader));
header->CheckHeader();
return header;
}
inline void HeapObjectHeader::CheckFromPayload(const void* payload) {
(void)FromPayload(payload);
}
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsWrapperHeaderMarked()
const {
CheckHeader();
return encoded_ & kHeaderWrapperMarkBitMask;
}
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::MarkWrapperHeader() {
CheckHeader();
DCHECK(!IsWrapperHeaderMarked());
encoded_ |= kHeaderWrapperMarkBitMask;
}
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::UnmarkWrapperHeader() {
CheckHeader();
DCHECK(IsWrapperHeaderMarked());
encoded_ &= ~kHeaderWrapperMarkBitMask;
}
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::IsMarked() const {
CheckHeader();
return encoded_ & kHeaderMarkBitMask;
}
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::Mark() {
CheckHeader();
DCHECK(!IsMarked());
encoded_ = encoded_ | kHeaderMarkBitMask;
}
NO_SANITIZE_ADDRESS inline void HeapObjectHeader::Unmark() {
CheckHeader();
DCHECK(IsMarked());
encoded_ &= ~kHeaderMarkBitMask;
}
NO_SANITIZE_ADDRESS inline bool HeapObjectHeader::TryMark() {
CheckHeader();
if (encoded_ & kHeaderMarkBitMask)
return false;
encoded_ |= kHeaderMarkBitMask;
return true;
}
NO_SANITIZE_ADDRESS inline bool BasePage::IsValid() const {
return GetMagic() == magic_;
}
inline Address NormalPageArena::AllocateObject(size_t allocation_size,
size_t gc_info_index) {
if (LIKELY(allocation_size <= remaining_allocation_size_)) {
Address header_address = current_allocation_point_;
current_allocation_point_ += allocation_size;
remaining_allocation_size_ -= allocation_size;
DCHECK_GT(gc_info_index, 0u);
new (NotNull, header_address) HeapObjectHeader(
allocation_size, gc_info_index, HeapObjectHeader::kNormalPage);
Address result = header_address + sizeof(HeapObjectHeader);
DCHECK(!(reinterpret_cast<uintptr_t>(result) & kAllocationMask));
SET_MEMORY_ACCESSIBLE(result, allocation_size - sizeof(HeapObjectHeader));
#if DCHECK_IS_ON()
DCHECK(FindPageFromAddress(header_address + allocation_size - 1));
#endif
return result;
}
return OutOfLineAllocate(allocation_size, gc_info_index);
}
inline NormalPageArena* NormalPage::ArenaForNormalPage() const {
return static_cast<NormalPageArena*>(Arena());
}
inline void ObjectStartBitmap::SetBit(Address header_address) {
size_t cell_index, object_bit;
ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
object_start_bit_map_[cell_index] |= (1 << object_bit);
}
inline void ObjectStartBitmap::ClearBit(Address header_address) {
size_t cell_index, object_bit;
ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
object_start_bit_map_[cell_index] &= ~(1 << object_bit);
}
inline bool ObjectStartBitmap::CheckBit(Address header_address) const {
size_t cell_index, object_bit;
ObjectStartIndexAndBit(header_address, &cell_index, &object_bit);
return object_start_bit_map_[cell_index] & (1 << object_bit);
}
inline void ObjectStartBitmap::ObjectStartIndexAndBit(Address header_address,
size_t* cell_index,
size_t* bit) const {
const size_t object_offset = header_address - offset_;
DCHECK(!(object_offset & kAllocationMask));
const size_t object_start_number = object_offset / kAllocationGranularity;
*cell_index = object_start_number / kCellSize;
#if DCHECK_IS_ON()
const size_t bitmap_size = kBitmapSize;
DCHECK_LT(*cell_index, bitmap_size);
#endif
*bit = object_start_number & kCellMask;
}
template <typename Callback>
inline void ObjectStartBitmap::Iterate(Callback callback) const {
for (size_t cell_index = 0; cell_index < kReservedForBitmap; cell_index++) {
if (!object_start_bit_map_[cell_index])
continue;
uint8_t value = object_start_bit_map_[cell_index];
while (value) {
const int trailing_zeroes = base::bits::CountTrailingZeroBits(value);
const size_t object_start_number =
(cell_index * kCellSize) + trailing_zeroes;
const Address object_address =
offset_ + (kAllocationGranularity * object_start_number);
callback(object_address);
// Clear current object bit in temporary value to advance iteration.
value &= ~(1 << (object_start_number & kCellMask));
}
}
}
inline HeapObjectHeader::HeapObjectHeader(size_t size,
size_t gc_info_index,
HeaderLocation header_location) {
// sizeof(HeapObjectHeader) must be equal to or smaller than
// |kAllocationGranularity|, because |HeapObjectHeader| is used as a header
// for a freed entry. Given that the smallest entry size is
// |kAllocationGranurarity|, |HeapObjectHeader| must fit into the size.
static_assert(
sizeof(HeapObjectHeader) <= kAllocationGranularity,
"size of HeapObjectHeader must be smaller than kAllocationGranularity");
#if defined(ARCH_CPU_64_BITS)
static_assert(sizeof(HeapObjectHeader) == 8,
"sizeof(HeapObjectHeader) must be 8 bytes");
magic_ = GetMagic();
#endif
DCHECK(gc_info_index < GCInfoTable::kMaxIndex);
DCHECK_LT(size, kNonLargeObjectPageSizeMax);
DCHECK(!(size & kAllocationMask));
encoded_ = static_cast<uint32_t>(
(gc_info_index << kHeaderGCInfoIndexShift) | size |
(gc_info_index == kGcInfoIndexForFreeListHeader ? kHeaderFreedBitMask
: 0));
if (header_location == kNormalPage) {
DCHECK(!PageFromObject(this)->IsLargeObjectPage());
static_cast<NormalPage*>(PageFromObject(this))
->object_start_bit_map()
->SetBit(reinterpret_cast<Address>(this));
} else {
DCHECK(PageFromObject(this)->IsLargeObjectPage());
}
}
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_HEAP_HEAP_PAGE_H_
|