1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <sstream>
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "test/gtest.h"
static const size_t kVector16Size = 9;
static const int16_t vector16[kVector16Size] = {1,
-15511,
4323,
1963,
WEBRTC_SPL_WORD16_MAX,
0,
WEBRTC_SPL_WORD16_MIN + 5,
-3333,
345};
class SplTest : public testing::Test {
protected:
SplTest() { WebRtcSpl_Init(); }
~SplTest() override {}
};
TEST_F(SplTest, MacroTest) {
// Macros with inputs.
int A = 10;
int B = 21;
int a = -3;
int b = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B));
EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a));
EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B));
EXPECT_EQ(2147483651u, WEBRTC_SPL_UMUL(a, b));
b = WEBRTC_SPL_WORD16_MAX >> 1;
EXPECT_EQ(4294918147u, WEBRTC_SPL_UMUL_32_16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b));
a = b;
b = -3;
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b));
EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b));
EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b));
EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2));
EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A));
// Shifting with negative numbers allowed
int shift_amount = 1; // Workaround compiler warning using variable here.
// Positive means left shift
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, shift_amount));
// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1));
EXPECT_EQ(8191u, WEBRTC_SPL_RSHIFT_U32(a, 1));
EXPECT_EQ(1470, WEBRTC_SPL_RAND(A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b));
EXPECT_EQ(1073676289,
WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MAX));
EXPECT_EQ(1073709055, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MAX,
WEBRTC_SPL_WORD32_MAX));
EXPECT_EQ(1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MIN));
#ifdef WEBRTC_ARCH_ARM_V7
EXPECT_EQ(-1073741824, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#else
EXPECT_EQ(-1073741823, WEBRTC_SPL_MUL_16_32_RSFT16(WEBRTC_SPL_WORD16_MIN,
WEBRTC_SPL_WORD32_MAX));
#endif
}
TEST_F(SplTest, InlineTest) {
int16_t a16 = 121;
int16_t b16 = -17;
int32_t a32 = 111121;
int32_t b32 = -1711;
EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(a32));
EXPECT_EQ(0, WebRtcSpl_NormW32(0));
EXPECT_EQ(31, WebRtcSpl_NormW32(-1));
EXPECT_EQ(0, WebRtcSpl_NormW32(WEBRTC_SPL_WORD32_MIN));
EXPECT_EQ(14, WebRtcSpl_NormW32(a32));
EXPECT_EQ(0, WebRtcSpl_NormW16(0));
EXPECT_EQ(15, WebRtcSpl_NormW16(-1));
EXPECT_EQ(0, WebRtcSpl_NormW16(WEBRTC_SPL_WORD16_MIN));
EXPECT_EQ(4, WebRtcSpl_NormW16(b32));
for (int ii = 0; ii < 15; ++ii) {
int16_t value = 1 << ii;
EXPECT_EQ(14 - ii, WebRtcSpl_NormW16(value));
EXPECT_EQ(15 - ii, WebRtcSpl_NormW16(-value));
}
EXPECT_EQ(0, WebRtcSpl_NormU32(0u));
EXPECT_EQ(0, WebRtcSpl_NormU32(0xffffffff));
EXPECT_EQ(15, WebRtcSpl_NormU32(static_cast<uint32_t>(a32)));
EXPECT_EQ(104, WebRtcSpl_AddSatW16(a16, b16));
EXPECT_EQ(138, WebRtcSpl_SubSatW16(a16, b16));
}
TEST_F(SplTest, AddSubSatW32) {
static constexpr int32_t kAddSubArgs[] = {
INT32_MIN, INT32_MIN + 1, -3, -2, -1, 0, 1, -1, 2,
3, INT32_MAX - 1, INT32_MAX};
for (int32_t a : kAddSubArgs) {
for (int32_t b : kAddSubArgs) {
const int64_t sum = std::max<int64_t>(
INT32_MIN, std::min<int64_t>(INT32_MAX, static_cast<int64_t>(a) + b));
const int64_t diff = std::max<int64_t>(
INT32_MIN, std::min<int64_t>(INT32_MAX, static_cast<int64_t>(a) - b));
std::ostringstream ss;
ss << a << " +/- " << b << ": sum " << sum << ", diff " << diff;
SCOPED_TRACE(ss.str());
EXPECT_EQ(sum, WebRtcSpl_AddSatW32(a, b));
EXPECT_EQ(diff, WebRtcSpl_SubSatW32(a, b));
}
}
}
TEST_F(SplTest, CountLeadingZeros32) {
EXPECT_EQ(32, WebRtcSpl_CountLeadingZeros32(0));
EXPECT_EQ(32, WebRtcSpl_CountLeadingZeros32_NotBuiltin(0));
for (int i = 0; i < 32; ++i) {
const uint32_t single_one = uint32_t{1} << i;
const uint32_t all_ones = 2 * single_one - 1;
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32(single_one));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32_NotBuiltin(single_one));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32(all_ones));
EXPECT_EQ(31 - i, WebRtcSpl_CountLeadingZeros32_NotBuiltin(all_ones));
}
}
TEST_F(SplTest, CountLeadingZeros64) {
EXPECT_EQ(64, WebRtcSpl_CountLeadingZeros64(0));
EXPECT_EQ(64, WebRtcSpl_CountLeadingZeros64_NotBuiltin(0));
for (int i = 0; i < 64; ++i) {
const uint64_t single_one = uint64_t{1} << i;
const uint64_t all_ones = 2 * single_one - 1;
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64(single_one));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64_NotBuiltin(single_one));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64(all_ones));
EXPECT_EQ(63 - i, WebRtcSpl_CountLeadingZeros64_NotBuiltin(all_ones));
}
}
TEST_F(SplTest, MathOperationsTest) {
int A = 1134567892;
int32_t num = 117;
int32_t den = -5;
uint16_t denU = 5;
EXPECT_EQ(33700, WebRtcSpl_Sqrt(A));
EXPECT_EQ(33683, WebRtcSpl_SqrtFloor(A));
EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (int16_t)den));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (int16_t)den));
EXPECT_EQ(23u, WebRtcSpl_DivU32U16(num, denU));
EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256));
}
TEST_F(SplTest, BasicArrayOperationsTest) {
const size_t kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t b16[kVectorSize];
int32_t b32[kVectorSize];
int16_t bTmp16[kVectorSize];
int32_t bTmp32[kVectorSize];
WebRtcSpl_MemSetW16(b16, 3, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b16[kk]);
}
WebRtcSpl_ZerosArrayW16(b16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b16[kk]);
}
WebRtcSpl_MemSetW32(b32, 3, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b32[kk]);
}
WebRtcSpl_ZerosArrayW32(b32, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b32[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
bTmp16[kk] = (int16_t)kk;
bTmp32[kk] = (int32_t)kk;
}
WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[kk], bTmp16[kk]);
}
// WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(b32[kk], bTmp32[kk]);
// }
WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16);
for (size_t kk = 0; kk < 2; ++kk) {
EXPECT_EQ(static_cast<int16_t>(kk + 2), bTmp16[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b32[kk] = B[kk];
b16[kk] = (int16_t)B[kk];
}
WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] >> 1), bTmp32[kk]);
}
WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[3 - kk], bTmp16[kk]);
}
}
TEST_F(SplTest, MinMaxOperationsTest) {
const size_t kVectorSize = 17;
// Vectors to test the cases where minimum values have to be caught
// outside of the unrolled loops in ARM-Neon.
int16_t vector16[kVectorSize] = {-1,
7485,
0,
3333,
-18283,
0,
12334,
-29871,
988,
-3333,
345,
-456,
222,
999,
888,
8774,
WEBRTC_SPL_WORD16_MIN};
int32_t vector32[kVectorSize] = {-1,
0,
283211,
3333,
8712345,
0,
-3333,
89345,
-374585456,
222,
999,
122345334,
-12389756,
-987329871,
888,
-2,
WEBRTC_SPL_WORD32_MIN};
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
// Test the cases where maximum values have to be caught
// outside of the unrolled loops in ARM-Neon.
vector16[kVectorSize - 1] = WEBRTC_SPL_WORD16_MAX;
vector32[kVectorSize - 1] = WEBRTC_SPL_WORD32_MAX;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(kVectorSize - 1, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
// Test the cases where multiple maximum and minimum values are present.
vector16[1] = WEBRTC_SPL_WORD16_MAX;
vector16[6] = WEBRTC_SPL_WORD16_MIN;
vector16[11] = WEBRTC_SPL_WORD16_MIN;
vector32[1] = WEBRTC_SPL_WORD32_MAX;
vector32[6] = WEBRTC_SPL_WORD32_MIN;
vector32[11] = WEBRTC_SPL_WORD32_MIN;
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxAbsValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MAX,
WebRtcSpl_MaxValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD16_MIN,
WebRtcSpl_MinValueW16(vector16, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxAbsValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MAX,
WebRtcSpl_MaxValueW32(vector32, kVectorSize));
EXPECT_EQ(WEBRTC_SPL_WORD32_MIN,
WebRtcSpl_MinValueW32(vector32, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MaxAbsIndexW16(vector16, kVectorSize));
EXPECT_EQ(1u, WebRtcSpl_MaxIndexW16(vector16, kVectorSize));
EXPECT_EQ(1u, WebRtcSpl_MaxIndexW32(vector32, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MinIndexW16(vector16, kVectorSize));
EXPECT_EQ(6u, WebRtcSpl_MinIndexW32(vector32, kVectorSize));
}
TEST_F(SplTest, VectorOperationsTest) {
const size_t kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int16_t a16[kVectorSize];
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
for (size_t kk = 0; kk < kVectorSize; ++kk) {
a16[kk] = B[kk];
b16[kk] = B[kk];
}
WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] * 3 + 7) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk] * 3 + B[kk] * 2 + 2) >> 2, bTmp16[kk]);
}
WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((B[kk] * 3 + B[kk] * 2 + 2) >> 2) + ((b16[kk] * 3 + 7) >> 2),
bTmp16[kk]);
}
WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk] * 13) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk] * 13) >> 2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((a16[kk] * 13) >> 2) + ((b16[kk] * 7) >> 2), bTmp16[kk]);
}
WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(B[kk] >> 1, bTmp16[kk]);
}
WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk] * b16[3 - kk]) >> 2, bTmp16[kk]);
}
WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk] * b16[kk]) >> 6, bTmp16[kk]);
}
WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16);
for (size_t kk = 0; kk < kVectorSize - 1; ++kk) {
EXPECT_EQ(32767, bTmp16[kk]);
}
EXPECT_EQ(32749, bTmp16[kVectorSize - 1]);
EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1));
}
TEST_F(SplTest, EstimatorsTest) {
const size_t kOrder = 2;
const int32_t unstable_filter[] = {4, 12, 133, 1100};
const int32_t stable_filter[] = {1100, 133, 12, 4};
int16_t lpc[kOrder + 2] = {0};
int16_t refl[kOrder + 2] = {0};
int16_t lpc_result[] = {4096, -497, 15, 0};
int16_t refl_result[] = {-3962, 123, 0, 0};
EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(unstable_filter, lpc, refl, kOrder));
EXPECT_EQ(1, WebRtcSpl_LevinsonDurbin(stable_filter, lpc, refl, kOrder));
for (size_t i = 0; i < kOrder + 2; ++i) {
EXPECT_EQ(lpc_result[i], lpc[i]);
EXPECT_EQ(refl_result[i], refl[i]);
}
}
TEST_F(SplTest, FilterTest) {
const size_t kVectorSize = 4;
const size_t kFilterOrder = 3;
int16_t A[] = {1, 2, 33, 100};
int16_t A5[] = {1, 2, 33, 100, -5};
int16_t B[] = {4, 12, 133, 110};
int16_t data_in[kVectorSize];
int16_t data_out[kVectorSize];
int16_t bTmp16Low[kVectorSize];
int16_t bState[kVectorSize];
int16_t bStateLow[kVectorSize];
WebRtcSpl_ZerosArrayW16(bState, kVectorSize);
WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
data_in[kk] = A[kk];
data_out[kk] = 0;
}
// MA filters.
// Note that the input data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterMAFastQ12(&data_in[kFilterOrder], data_out, B,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[0]);
// AR filters.
// Note that the output data has |kFilterOrder| states before the actual
// data (one sample).
WebRtcSpl_FilterARFastQ12(data_in, &data_out[kFilterOrder], A,
kFilterOrder + 1, 1);
EXPECT_EQ(0, data_out[kFilterOrder]);
EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5, 5, data_in, kVectorSize, bState,
kVectorSize, bStateLow, kVectorSize,
data_out, bTmp16Low, kVectorSize));
}
TEST_F(SplTest, RandTest) {
const int kVectorSize = 4;
int16_t BU[] = {3653, 12446, 8525, 30691};
int16_t b16[kVectorSize];
uint32_t bSeed = 100000;
EXPECT_EQ(7086, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed));
EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(BU[kk], b16[kk]);
}
}
TEST_F(SplTest, DotProductWithScaleTest) {
EXPECT_EQ(605362796, WebRtcSpl_DotProductWithScale(vector16, vector16,
kVector16Size, 2));
}
TEST_F(SplTest, CrossCorrelationTest) {
// Note the function arguments relation specificed by API.
const size_t kCrossCorrelationDimension = 3;
const int kShift = 2;
const int kStep = 1;
const size_t kSeqDimension = 6;
const int16_t kVector16[kVector16Size] = {
1, 4323, 1963, WEBRTC_SPL_WORD16_MAX, WEBRTC_SPL_WORD16_MIN + 5, -3333,
-876, 8483, 142};
int32_t vector32[kCrossCorrelationDimension] = {0};
WebRtcSpl_CrossCorrelation(vector32, vector16, kVector16, kSeqDimension,
kCrossCorrelationDimension, kShift, kStep);
// WebRtcSpl_CrossCorrelationC() and WebRtcSpl_CrossCorrelationNeon()
// are not bit-exact.
const int32_t kExpected[kCrossCorrelationDimension] = {-266947903, -15579555,
-171282001};
const int32_t* expected = kExpected;
#if !defined(MIPS32_LE)
const int32_t kExpectedNeon[kCrossCorrelationDimension] = {
-266947901, -15579553, -171281999};
if (WebRtcSpl_CrossCorrelation != WebRtcSpl_CrossCorrelationC) {
expected = kExpectedNeon;
}
#endif
for (size_t i = 0; i < kCrossCorrelationDimension; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, AutoCorrelationTest) {
int scale = 0;
int32_t vector32[kVector16Size];
const int32_t expected[kVector16Size] = {302681398, 14223410, -121705063,
-85221647, -17104971, 61806945,
6644603, -669329, 43};
EXPECT_EQ(kVector16Size,
WebRtcSpl_AutoCorrelation(vector16, kVector16Size,
kVector16Size - 1, vector32, &scale));
EXPECT_EQ(3, scale);
for (size_t i = 0; i < kVector16Size; ++i) {
EXPECT_EQ(expected[i], vector32[i]);
}
}
TEST_F(SplTest, SignalProcessingTest) {
const size_t kVectorSize = 4;
int A[] = {1, 2, 33, 100};
const int16_t kHanning[4] = {2399, 8192, 13985, 16384};
int16_t b16[kVectorSize];
int16_t bTmp16[kVectorSize];
int bScale = 0;
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
// TODO(bjornv): Activate the Reflection Coefficient tests when refactoring.
// WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
// WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(a16[kk], b16[kk]);
//// }
// WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16);
//// for (int kk = 0; kk < kVectorSize; ++kk) {
//// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
//// }
WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize);
for (size_t kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(kHanning[kk], bTmp16[kk]);
}
for (size_t kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
EXPECT_EQ(11094, WebRtcSpl_Energy(b16, kVectorSize, &bScale));
EXPECT_EQ(0, bScale);
}
TEST_F(SplTest, FFTTest) {
int16_t B[] = {1, 2, 33, 100, 2, 3, 34, 101, 3, 4, 35, 102, 4, 5, 36, 103};
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
WebRtcSpl_ComplexBitReverse(B, 3);
for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
}
}
TEST_F(SplTest, Resample48WithSaturationTest) {
// The test resamples 3*kBlockSize number of samples to 2*kBlockSize number
// of samples.
const size_t kBlockSize = 16;
// Saturated input vector of 48 samples.
const int32_t kVectorSaturated[3 * kBlockSize + 7] = {
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767, 32767,
32767, 32767, 32767, 32767, 32767, 32767, 32767};
// All values in |out_vector| should be |kRefValue32kHz|.
const int32_t kRefValue32kHz1 = -1077493760;
const int32_t kRefValue32kHz2 = 1077493645;
// After bit shift with saturation, |out_vector_w16| is saturated.
const int16_t kRefValue16kHz1 = -32768;
const int16_t kRefValue16kHz2 = 32767;
// Vector for storing output.
int32_t out_vector[2 * kBlockSize];
int16_t out_vector_w16[2 * kBlockSize];
WebRtcSpl_Resample48khzTo32khz(kVectorSaturated, out_vector, kBlockSize);
WebRtcSpl_VectorBitShiftW32ToW16(out_vector_w16, 2 * kBlockSize, out_vector,
15);
// Comparing output values against references. The values at position
// 12-15 are skipped to account for the filter lag.
for (size_t i = 0; i < 12; ++i) {
EXPECT_EQ(kRefValue32kHz1, out_vector[i]);
EXPECT_EQ(kRefValue16kHz1, out_vector_w16[i]);
}
for (size_t i = 16; i < 2 * kBlockSize; ++i) {
EXPECT_EQ(kRefValue32kHz2, out_vector[i]);
EXPECT_EQ(kRefValue16kHz2, out_vector_w16[i]);
}
}
|