1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <numeric>
#include <sstream>
#include <vector>
#include "modules/audio_coding/codecs/isac/fix/include/audio_encoder_isacfix.h"
#include "modules/audio_coding/codecs/isac/main/include/audio_encoder_isac.h"
#include "modules/audio_coding/neteq/tools/input_audio_file.h"
#include "rtc_base/buffer.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/gtest.h"
#include "test/testsupport/fileutils.h"
namespace webrtc {
namespace {
const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz
std::vector<int16_t> LoadSpeechData() {
webrtc::test::InputAudioFile input_file(
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"));
std::vector<int16_t> speech_data(kIsacNumberOfSamples);
input_file.Read(kIsacNumberOfSamples, speech_data.data());
return speech_data;
}
template <typename T>
IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) {
IsacBandwidthInfo bi;
T::GetBandwidthInfo(inst, &bi);
EXPECT_TRUE(bi.in_use);
return bi;
}
// Encodes one packet. Returns the packet duration in milliseconds.
template <typename T>
int EncodePacket(typename T::instance_type* inst,
const IsacBandwidthInfo* bi,
const int16_t* speech_data,
rtc::Buffer* output) {
output->SetSize(1000);
for (int duration_ms = 10;; duration_ms += 10) {
if (bi)
T::SetBandwidthInfo(inst, bi);
int encoded_bytes = T::Encode(inst, speech_data, output->data());
if (encoded_bytes > 0 || duration_ms >= 60) {
EXPECT_GT(encoded_bytes, 0);
EXPECT_LE(static_cast<size_t>(encoded_bytes), output->size());
output->SetSize(encoded_bytes);
return duration_ms;
}
}
}
template <typename T>
std::vector<int16_t> DecodePacket(typename T::instance_type* inst,
const rtc::Buffer& encoded) {
std::vector<int16_t> decoded(kIsacNumberOfSamples);
int16_t speech_type;
int nsamples = T::DecodeInternal(inst, encoded.data(), encoded.size(),
&decoded.front(), &speech_type);
EXPECT_GT(nsamples, 0);
EXPECT_LE(static_cast<size_t>(nsamples), decoded.size());
decoded.resize(nsamples);
return decoded;
}
class BoundedCapacityChannel final {
public:
BoundedCapacityChannel(int sample_rate_hz, int rate_bits_per_second)
: current_time_rtp_(0),
channel_rate_bytes_per_sample_(rate_bits_per_second /
(8.0 * sample_rate_hz)) {}
// Simulate sending the given number of bytes at the given RTP time. Returns
// the new current RTP time after the sending is done.
int Send(int send_time_rtp, int nbytes) {
current_time_rtp_ = std::max(current_time_rtp_, send_time_rtp) +
nbytes / channel_rate_bytes_per_sample_;
return current_time_rtp_;
}
private:
int current_time_rtp_;
// The somewhat strange unit for channel rate, bytes per sample, is because
// RTP time is measured in samples:
const double channel_rate_bytes_per_sample_;
};
// Test that the iSAC encoder produces identical output whether or not we use a
// conjoined encoder+decoder pair or a separate encoder and decoder that
// communicate BW estimation info explicitly.
template <typename T, bool adaptive>
void TestGetSetBandwidthInfo(const int16_t* speech_data,
int rate_bits_per_second,
int sample_rate_hz,
int frame_size_ms) {
const int bit_rate = 32000;
// Conjoined encoder/decoder pair:
typename T::instance_type* encdec;
ASSERT_EQ(0, T::Create(&encdec));
ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1));
T::DecoderInit(encdec);
ASSERT_EQ(0, T::SetEncSampRate(encdec, sample_rate_hz));
if (adaptive)
ASSERT_EQ(0, T::ControlBwe(encdec, bit_rate, frame_size_ms, false));
else
ASSERT_EQ(0, T::Control(encdec, bit_rate, frame_size_ms));
// Disjoint encoder/decoder pair:
typename T::instance_type* enc;
ASSERT_EQ(0, T::Create(&enc));
ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1));
ASSERT_EQ(0, T::SetEncSampRate(enc, sample_rate_hz));
if (adaptive)
ASSERT_EQ(0, T::ControlBwe(enc, bit_rate, frame_size_ms, false));
else
ASSERT_EQ(0, T::Control(enc, bit_rate, frame_size_ms));
typename T::instance_type* dec;
ASSERT_EQ(0, T::Create(&dec));
T::DecoderInit(dec);
T::SetInitialBweBottleneck(dec, bit_rate);
T::SetEncSampRateInDecoder(dec, sample_rate_hz);
// 0. Get initial BW info from decoder.
auto bi = GetBwInfo<T>(dec);
BoundedCapacityChannel channel1(sample_rate_hz, rate_bits_per_second),
channel2(sample_rate_hz, rate_bits_per_second);
int elapsed_time_ms = 0;
for (int i = 0; elapsed_time_ms < 10000; ++i) {
std::ostringstream ss;
ss << " i = " << i;
SCOPED_TRACE(ss.str());
// 1. Encode 3 * 10 ms or 6 * 10 ms. The separate encoder is given the BW
// info before each encode call.
rtc::Buffer bitstream1, bitstream2;
int duration1_ms =
EncodePacket<T>(encdec, nullptr, speech_data, &bitstream1);
int duration2_ms = EncodePacket<T>(enc, &bi, speech_data, &bitstream2);
EXPECT_EQ(duration1_ms, duration2_ms);
if (adaptive)
EXPECT_TRUE(duration1_ms == 30 || duration1_ms == 60);
else
EXPECT_EQ(frame_size_ms, duration1_ms);
ASSERT_EQ(bitstream1.size(), bitstream2.size());
EXPECT_EQ(bitstream1, bitstream2);
// 2. Deliver the encoded data to the decoders.
const int send_time = elapsed_time_ms * (sample_rate_hz / 1000);
EXPECT_EQ(0, T::UpdateBwEstimate(
encdec, bitstream1.data(), bitstream1.size(), i, send_time,
channel1.Send(send_time,
rtc::checked_cast<int>(bitstream1.size()))));
EXPECT_EQ(0, T::UpdateBwEstimate(
dec, bitstream2.data(), bitstream2.size(), i, send_time,
channel2.Send(send_time,
rtc::checked_cast<int>(bitstream2.size()))));
// 3. Decode, and get new BW info from the separate decoder.
ASSERT_EQ(0, T::SetDecSampRate(encdec, sample_rate_hz));
ASSERT_EQ(0, T::SetDecSampRate(dec, sample_rate_hz));
auto decoded1 = DecodePacket<T>(encdec, bitstream1);
auto decoded2 = DecodePacket<T>(dec, bitstream2);
EXPECT_EQ(decoded1, decoded2);
bi = GetBwInfo<T>(dec);
elapsed_time_ms += duration1_ms;
}
EXPECT_EQ(0, T::Free(encdec));
EXPECT_EQ(0, T::Free(enc));
EXPECT_EQ(0, T::Free(dec));
}
enum class IsacType { Fix, Float };
std::ostream& operator<<(std::ostream& os, IsacType t) {
os << (t == IsacType::Fix ? "fix" : "float");
return os;
}
struct IsacTestParam {
IsacType isac_type;
bool adaptive;
int channel_rate_bits_per_second;
int sample_rate_hz;
int frame_size_ms;
friend std::ostream& operator<<(std::ostream& os, const IsacTestParam& itp) {
os << '{' << itp.isac_type << ','
<< (itp.adaptive ? "adaptive" : "nonadaptive") << ','
<< itp.channel_rate_bits_per_second << ',' << itp.sample_rate_hz << ','
<< itp.frame_size_ms << '}';
return os;
}
};
class IsacCommonTest : public testing::TestWithParam<IsacTestParam> {};
} // namespace
TEST_P(IsacCommonTest, GetSetBandwidthInfo) {
auto p = GetParam();
auto test_fun = [p] {
if (p.isac_type == IsacType::Fix) {
if (p.adaptive)
return TestGetSetBandwidthInfo<IsacFix, true>;
else
return TestGetSetBandwidthInfo<IsacFix, false>;
} else {
if (p.adaptive)
return TestGetSetBandwidthInfo<IsacFloat, true>;
else
return TestGetSetBandwidthInfo<IsacFloat, false>;
}
}();
test_fun(LoadSpeechData().data(), p.channel_rate_bits_per_second,
p.sample_rate_hz, p.frame_size_ms);
}
std::vector<IsacTestParam> TestCases() {
static const IsacType types[] = {IsacType::Fix, IsacType::Float};
static const bool adaptives[] = {true, false};
static const int channel_rates[] = {12000, 15000, 19000, 22000};
static const int sample_rates[] = {16000, 32000};
static const int frame_sizes[] = {30, 60};
std::vector<IsacTestParam> cases;
for (IsacType type : types)
for (bool adaptive : adaptives)
for (int channel_rate : channel_rates)
for (int sample_rate : sample_rates)
if (!(type == IsacType::Fix && sample_rate == 32000))
for (int frame_size : frame_sizes)
if (!(sample_rate == 32000 && frame_size == 60))
cases.push_back(
{type, adaptive, channel_rate, sample_rate, frame_size});
return cases;
}
INSTANTIATE_TEST_CASE_P(, IsacCommonTest, testing::ValuesIn(TestCases()));
} // namespace webrtc
|