1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <array>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr float kPi = 3.141592f;
void ProduceSinusoid(int sample_rate_hz,
float sinusoidal_frequency_hz,
size_t* sample_counter,
rtc::ArrayView<float> x) {
// Produce a sinusoid of the specified frequency.
for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize);
++k, ++j) {
x[j] =
32767.f * sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz);
}
*sample_counter = *sample_counter + kBlockSize;
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(RenderSignalAnalyzer, NullMaskOutput) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), "");
}
#endif
// Verify that no narrow bands are detected in a Gaussian noise signal.
TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(EchoCanceller3Config(), 3));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
for (size_t k = 0; k < 100; ++k) {
RandomizeSampleVector(&random_generator, x[0]);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
absl::optional<size_t>(0));
}
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
EXPECT_TRUE(
std::all_of(mask.begin(), mask.end(), [](float a) { return a == 1.f; }));
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
// Verify that a sinusiod signal is detected as narrow bands.
TEST(RenderSignalAnalyzer, NarrowBandDetection) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::array<float, kBlockSize> x_old;
Aec3Fft fft;
EchoCanceller3Config config;
config.delay.min_echo_path_delay_blocks = 0;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
constexpr int kSinusFrequencyBin = 32;
auto generate_sinusoid_test = [&](bool known_delay) {
size_t sample_counter = 0;
for (size_t k = 0; k < 100; ++k) {
ProduceSinusoid(16000, 16000 / 2 * kSinusFrequencyBin / kFftLengthBy2,
&sample_counter, x[0]);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
known_delay ? absl::optional<size_t>(0) : absl::nullopt);
}
};
generate_sinusoid_test(true);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
for (int k = 0; k < static_cast<int>(mask.size()); ++k) {
EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]);
}
EXPECT_TRUE(analyzer.PoorSignalExcitation());
// Verify that no bands are detected as narrow when the delay is unknown.
generate_sinusoid_test(false);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); });
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
} // namespace webrtc
|