File: timing.cc

package info (click to toggle)
chromium-browser 70.0.3538.110-1~deb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,619,476 kB
  • sloc: cpp: 13,024,755; ansic: 1,349,823; python: 916,672; xml: 314,489; java: 280,047; asm: 276,936; perl: 75,771; objc: 66,634; sh: 45,860; cs: 28,354; php: 11,064; makefile: 10,911; yacc: 9,109; tcl: 8,403; ruby: 4,065; lex: 1,779; pascal: 1,411; lisp: 1,055; awk: 41; jsp: 39; sed: 17; sql: 3
file content (247 lines) | stat: -rw-r--r-- 8,084 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/timing.h"

#include <algorithm>

#include "rtc_base/time/timestamp_extrapolator.h"
#include "system_wrappers/include/clock.h"

namespace webrtc {

VCMTiming::VCMTiming(Clock* clock, VCMTiming* master_timing)
    : clock_(clock),
      master_(false),
      ts_extrapolator_(),
      codec_timer_(new VCMCodecTimer()),
      render_delay_ms_(kDefaultRenderDelayMs),
      min_playout_delay_ms_(0),
      max_playout_delay_ms_(10000),
      jitter_delay_ms_(0),
      current_delay_ms_(0),
      last_decode_ms_(0),
      prev_frame_timestamp_(0),
      timing_frame_info_(),
      num_decoded_frames_(0) {
  if (master_timing == NULL) {
    master_ = true;
    ts_extrapolator_ = new TimestampExtrapolator(clock_->TimeInMilliseconds());
  } else {
    ts_extrapolator_ = master_timing->ts_extrapolator_;
  }
}

VCMTiming::~VCMTiming() {
  if (master_) {
    delete ts_extrapolator_;
  }
}

void VCMTiming::Reset() {
  rtc::CritScope cs(&crit_sect_);
  ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
  codec_timer_.reset(new VCMCodecTimer());
  render_delay_ms_ = kDefaultRenderDelayMs;
  min_playout_delay_ms_ = 0;
  jitter_delay_ms_ = 0;
  current_delay_ms_ = 0;
  prev_frame_timestamp_ = 0;
}

void VCMTiming::set_render_delay(int render_delay_ms) {
  rtc::CritScope cs(&crit_sect_);
  render_delay_ms_ = render_delay_ms;
}

void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) {
  rtc::CritScope cs(&crit_sect_);
  min_playout_delay_ms_ = min_playout_delay_ms;
}

int VCMTiming::min_playout_delay() {
  rtc::CritScope cs(&crit_sect_);
  return min_playout_delay_ms_;
}

void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) {
  rtc::CritScope cs(&crit_sect_);
  max_playout_delay_ms_ = max_playout_delay_ms;
}

int VCMTiming::max_playout_delay() {
  rtc::CritScope cs(&crit_sect_);
  return max_playout_delay_ms_;
}

void VCMTiming::SetJitterDelay(int jitter_delay_ms) {
  rtc::CritScope cs(&crit_sect_);
  if (jitter_delay_ms != jitter_delay_ms_) {
    jitter_delay_ms_ = jitter_delay_ms;
    // When in initial state, set current delay to minimum delay.
    if (current_delay_ms_ == 0) {
      current_delay_ms_ = jitter_delay_ms_;
    }
  }
}

void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
  rtc::CritScope cs(&crit_sect_);
  int target_delay_ms = TargetDelayInternal();

  if (current_delay_ms_ == 0) {
    // Not initialized, set current delay to target.
    current_delay_ms_ = target_delay_ms;
  } else if (target_delay_ms != current_delay_ms_) {
    int64_t delay_diff_ms =
        static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
    // Never change the delay with more than 100 ms every second. If we're
    // changing the delay in too large steps we will get noticeable freezes. By
    // limiting the change we can increase the delay in smaller steps, which
    // will be experienced as the video is played in slow motion. When lowering
    // the delay the video will be played at a faster pace.
    int64_t max_change_ms = 0;
    if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
      // wrap
      max_change_ms = kDelayMaxChangeMsPerS *
                      (frame_timestamp + (static_cast<int64_t>(1) << 32) -
                       prev_frame_timestamp_) /
                      90000;
    } else {
      max_change_ms = kDelayMaxChangeMsPerS *
                      (frame_timestamp - prev_frame_timestamp_) / 90000;
    }

    if (max_change_ms <= 0) {
      // Any changes less than 1 ms are truncated and will be postponed.
      // Negative change will be due to reordering and should be ignored.
      return;
    }
    delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
    delay_diff_ms = std::min(delay_diff_ms, max_change_ms);

    current_delay_ms_ = current_delay_ms_ + delay_diff_ms;
  }
  prev_frame_timestamp_ = frame_timestamp;
}

void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
                                   int64_t actual_decode_time_ms) {
  rtc::CritScope cs(&crit_sect_);
  uint32_t target_delay_ms = TargetDelayInternal();
  int64_t delayed_ms =
      actual_decode_time_ms -
      (render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_);
  if (delayed_ms < 0) {
    return;
  }
  if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
    current_delay_ms_ += delayed_ms;
  } else {
    current_delay_ms_ = target_delay_ms;
  }
}

void VCMTiming::StopDecodeTimer(uint32_t time_stamp,
                                int32_t decode_time_ms,
                                int64_t now_ms,
                                int64_t render_time_ms) {
  rtc::CritScope cs(&crit_sect_);
  codec_timer_->AddTiming(decode_time_ms, now_ms);
  assert(decode_time_ms >= 0);
  last_decode_ms_ = decode_time_ms;
  ++num_decoded_frames_;
}

void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
  rtc::CritScope cs(&crit_sect_);
  ts_extrapolator_->Update(now_ms, time_stamp);
}

int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
                                int64_t now_ms) const {
  rtc::CritScope cs(&crit_sect_);
  return RenderTimeMsInternal(frame_timestamp, now_ms);
}

int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
                                        int64_t now_ms) const {
  if (min_playout_delay_ms_ == 0 && max_playout_delay_ms_ == 0) {
    // Render as soon as possible.
    return 0;
  }
  int64_t estimated_complete_time_ms =
      ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
  if (estimated_complete_time_ms == -1) {
    estimated_complete_time_ms = now_ms;
  }

  // Make sure the actual delay stays in the range of |min_playout_delay_ms_|
  // and |max_playout_delay_ms_|.
  int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
  actual_delay = std::min(actual_delay, max_playout_delay_ms_);
  return estimated_complete_time_ms + actual_delay;
}

int VCMTiming::RequiredDecodeTimeMs() const {
  const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs();
  assert(decode_time_ms >= 0);
  return decode_time_ms;
}

int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
                                  int64_t now_ms) const {
  rtc::CritScope cs(&crit_sect_);

  const int64_t max_wait_time_ms =
      render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_;

  return max_wait_time_ms;
}

int VCMTiming::TargetVideoDelay() const {
  rtc::CritScope cs(&crit_sect_);
  return TargetDelayInternal();
}

int VCMTiming::TargetDelayInternal() const {
  return std::max(min_playout_delay_ms_,
                  jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_);
}

bool VCMTiming::GetTimings(int* decode_ms,
                           int* max_decode_ms,
                           int* current_delay_ms,
                           int* target_delay_ms,
                           int* jitter_buffer_ms,
                           int* min_playout_delay_ms,
                           int* render_delay_ms) const {
  rtc::CritScope cs(&crit_sect_);
  *decode_ms = last_decode_ms_;
  *max_decode_ms = RequiredDecodeTimeMs();
  *current_delay_ms = current_delay_ms_;
  *target_delay_ms = TargetDelayInternal();
  *jitter_buffer_ms = jitter_delay_ms_;
  *min_playout_delay_ms = min_playout_delay_ms_;
  *render_delay_ms = render_delay_ms_;
  return (num_decoded_frames_ > 0);
}

void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) {
  rtc::CritScope cs(&crit_sect_);
  timing_frame_info_.emplace(info);
}

absl::optional<TimingFrameInfo> VCMTiming::GetTimingFrameInfo() {
  rtc::CritScope cs(&crit_sect_);
  return timing_frame_info_;
}

}  // namespace webrtc