File: simulcast_test_fixture_impl.cc

package info (click to toggle)
chromium-browser 70.0.3538.110-1~deb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,619,476 kB
  • sloc: cpp: 13,024,755; ansic: 1,349,823; python: 916,672; xml: 314,489; java: 280,047; asm: 276,936; perl: 75,771; objc: 66,634; sh: 45,860; cs: 28,354; php: 11,064; makefile: 10,911; yacc: 9,109; tcl: 8,403; ruby: 4,065; lex: 1,779; pascal: 1,411; lisp: 1,055; awk: 41; jsp: 39; sed: 17; sql: 3
file content (829 lines) | stat: -rw-r--r-- 34,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/utility/simulcast_test_fixture_impl.h"

#include <algorithm>
#include <map>
#include <memory>
#include <vector>

#include "api/video_codecs/sdp_video_format.h"
#include "common_video/include/video_frame.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"

using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;

namespace webrtc {
namespace test {

namespace {

const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
const int kNoTemporalLayerProfile[3] = {0, 0, 0};

template <typename T>
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
  expected_values[0] = value0;
  expected_values[1] = value1;
  expected_values[2] = value2;
}

enum PlaneType {
  kYPlane = 0,
  kUPlane = 1,
  kVPlane = 2,
  kNumOfPlanes = 3,
};

}  // namespace

class SimulcastTestFixtureImpl::TestEncodedImageCallback
    : public EncodedImageCallback {
 public:
  TestEncodedImageCallback() {
    memset(temporal_layer_, -1, sizeof(temporal_layer_));
    memset(layer_sync_, false, sizeof(layer_sync_));
  }

  ~TestEncodedImageCallback() {
    delete[] encoded_key_frame_._buffer;
    delete[] encoded_frame_._buffer;
  }

  virtual Result OnEncodedImage(const EncodedImage& encoded_image,
                                const CodecSpecificInfo* codec_specific_info,
                                const RTPFragmentationHeader* fragmentation) {
    uint16_t simulcast_idx = 0;
    bool is_vp8 = (codec_specific_info->codecType == kVideoCodecVP8);
    if (is_vp8) {
      simulcast_idx = codec_specific_info->codecSpecific.VP8.simulcastIdx;
    } else {
      simulcast_idx = codec_specific_info->codecSpecific.H264.simulcast_idx;
    }
    // Only store the base layer.
    if (simulcast_idx) {
      if (encoded_image._frameType == kVideoFrameKey) {
        delete[] encoded_key_frame_._buffer;
        encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
        encoded_key_frame_._size = encoded_image._size;
        encoded_key_frame_._length = encoded_image._length;
        encoded_key_frame_._frameType = kVideoFrameKey;
        encoded_key_frame_._completeFrame = encoded_image._completeFrame;
        memcpy(encoded_key_frame_._buffer, encoded_image._buffer,
               encoded_image._length);
      } else {
        delete[] encoded_frame_._buffer;
        encoded_frame_._buffer = new uint8_t[encoded_image._size];
        encoded_frame_._size = encoded_image._size;
        encoded_frame_._length = encoded_image._length;
        memcpy(encoded_frame_._buffer, encoded_image._buffer,
               encoded_image._length);
      }
    }
    if (is_vp8) {
      layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
          codec_specific_info->codecSpecific.VP8.layerSync;
      temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
          codec_specific_info->codecSpecific.VP8.temporalIdx;
    }
    return Result(Result::OK, encoded_image.Timestamp());
  }
  // This method only makes sense for VP8.
  void GetLastEncodedFrameInfo(int* temporal_layer,
                               bool* layer_sync,
                               int stream) {
    *temporal_layer = temporal_layer_[stream];
    *layer_sync = layer_sync_[stream];
  }
  void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
    *encoded_key_frame = encoded_key_frame_;
  }
  void GetLastEncodedFrame(EncodedImage* encoded_frame) {
    *encoded_frame = encoded_frame_;
  }

 private:
  EncodedImage encoded_key_frame_;
  EncodedImage encoded_frame_;
  int temporal_layer_[kNumberOfSimulcastStreams];
  bool layer_sync_[kNumberOfSimulcastStreams];
};

class SimulcastTestFixtureImpl::TestDecodedImageCallback
    : public DecodedImageCallback {
 public:
  TestDecodedImageCallback() : decoded_frames_(0) {}
  int32_t Decoded(VideoFrame& decoded_image) override {
    rtc::scoped_refptr<I420BufferInterface> i420_buffer =
        decoded_image.video_frame_buffer()->ToI420();
    for (int i = 0; i < decoded_image.width(); ++i) {
      EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
    }

    // TODO(mikhal): Verify the difference between U,V and the original.
    for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
      EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
      EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
    }
    decoded_frames_++;
    return 0;
  }
  int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
    RTC_NOTREACHED();
    return -1;
  }
  void Decoded(VideoFrame& decoded_image,
               absl::optional<int32_t> decode_time_ms,
               absl::optional<uint8_t> qp) override {
    Decoded(decoded_image);
  }
  int DecodedFrames() { return decoded_frames_; }

 private:
  int decoded_frames_;
};

namespace {

void SetPlane(uint8_t* data, uint8_t value, int width, int height, int stride) {
  for (int i = 0; i < height; i++, data += stride) {
    // Setting allocated area to zero - setting only image size to
    // requested values - will make it easier to distinguish between image
    // size and frame size (accounting for stride).
    memset(data, value, width);
    memset(data + width, 0, stride - width);
  }
}

// Fills in an I420Buffer from |plane_colors|.
void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
                 int plane_colors[kNumOfPlanes]) {
  SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
           buffer->height(), buffer->StrideY());

  SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
           buffer->ChromaHeight(), buffer->StrideU());

  SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
           buffer->ChromaHeight(), buffer->StrideV());
}

void ConfigureStream(int width,
                     int height,
                     int max_bitrate,
                     int min_bitrate,
                     int target_bitrate,
                     SimulcastStream* stream,
                     int num_temporal_layers) {
  assert(stream);
  stream->width = width;
  stream->height = height;
  stream->maxBitrate = max_bitrate;
  stream->minBitrate = min_bitrate;
  stream->targetBitrate = target_bitrate;
  if (num_temporal_layers >= 0) {
    stream->numberOfTemporalLayers = num_temporal_layers;
  }
  stream->qpMax = 45;
  stream->active = true;
}

}  // namespace

void SimulcastTestFixtureImpl::DefaultSettings(
    VideoCodec* settings,
    const int* temporal_layer_profile,
    VideoCodecType codec_type) {
  RTC_CHECK(settings);
  memset(settings, 0, sizeof(VideoCodec));
  settings->codecType = codec_type;
  // 96 to 127 dynamic payload types for video codecs
  settings->plType = 120;
  settings->startBitrate = 300;
  settings->minBitrate = 30;
  settings->maxBitrate = 0;
  settings->maxFramerate = 30;
  settings->width = kDefaultWidth;
  settings->height = kDefaultHeight;
  settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
  settings->active = true;
  ASSERT_EQ(3, kNumberOfSimulcastStreams);
  settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
                                       kDefaultOutlierFrameSizePercent};
  ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
                  kMinBitrates[0], kTargetBitrates[0],
                  &settings->simulcastStream[0], temporal_layer_profile[0]);
  ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
                  kMinBitrates[1], kTargetBitrates[1],
                  &settings->simulcastStream[1], temporal_layer_profile[1]);
  ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
                  kMinBitrates[2], kTargetBitrates[2],
                  &settings->simulcastStream[2], temporal_layer_profile[2]);
    if (codec_type == kVideoCodecVP8) {
      settings->VP8()->denoisingOn = true;
      settings->VP8()->automaticResizeOn = false;
      settings->VP8()->frameDroppingOn = true;
      settings->VP8()->keyFrameInterval = 3000;
    } else {
      settings->H264()->frameDroppingOn = true;
      settings->H264()->keyFrameInterval = 3000;
    }
}

SimulcastTestFixtureImpl::SimulcastTestFixtureImpl(
    std::unique_ptr<VideoEncoderFactory> encoder_factory,
    std::unique_ptr<VideoDecoderFactory> decoder_factory,
    SdpVideoFormat video_format)
    : codec_type_(PayloadStringToCodecType(video_format.name)) {
  encoder_ = encoder_factory->CreateVideoEncoder(video_format);
  decoder_ = decoder_factory->CreateVideoDecoder(video_format);
  SetUpCodec(codec_type_ == kVideoCodecVP8 ? kDefaultTemporalLayerProfile
    : kNoTemporalLayerProfile);
}

SimulcastTestFixtureImpl::~SimulcastTestFixtureImpl() {
  encoder_->Release();
  decoder_->Release();
}

void SimulcastTestFixtureImpl::SetUpCodec(const int* temporal_layer_profile) {
  encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
  decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
  DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
  SetUpRateAllocator();
  EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
  EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
  input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
  input_buffer_->InitializeData();
  input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
                                    0 /* timestamp_us */));
}

void SimulcastTestFixtureImpl::SetUpRateAllocator() {
  rate_allocator_.reset(new SimulcastRateAllocator(settings_));
}

void SimulcastTestFixtureImpl::SetRates(uint32_t bitrate_kbps, uint32_t fps) {
  encoder_->SetRateAllocation(
      rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}

void SimulcastTestFixtureImpl::RunActiveStreamsTest(
    const std::vector<bool> active_streams) {
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  UpdateActiveStreams(active_streams);
  // Set sufficient bitrate for all streams so we can test active without
  // bitrate being an issue.
  SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);

  ExpectStreams(kVideoFrameKey, active_streams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, active_streams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::UpdateActiveStreams(
    const std::vector<bool> active_streams) {
  ASSERT_EQ(static_cast<int>(active_streams.size()), kNumberOfSimulcastStreams);
  for (size_t i = 0; i < active_streams.size(); ++i) {
    settings_.simulcastStream[i].active = active_streams[i];
  }
  // Re initialize the allocator and encoder with the new settings.
  // TODO(bugs.webrtc.org/8807): Currently, we do a full "hard"
  // reconfiguration of the allocator and encoder. When the video bitrate
  // allocator has support for updating active streams without a
  // reinitialization, we can just call that here instead.
  SetUpRateAllocator();
  EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
}

void SimulcastTestFixtureImpl::ExpectStreams(
    FrameType frame_type,
    const std::vector<bool> expected_streams_active) {
  ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
            kNumberOfSimulcastStreams);
  if (expected_streams_active[0]) {
    EXPECT_CALL(
        encoder_callback_,
        OnEncodedImage(
            AllOf(Field(&EncodedImage::_frameType, frame_type),
                  Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
                  Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
            _, _))
        .Times(1)
        .WillRepeatedly(Return(
            EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
  }
  if (expected_streams_active[1]) {
    EXPECT_CALL(
        encoder_callback_,
        OnEncodedImage(
            AllOf(Field(&EncodedImage::_frameType, frame_type),
                  Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
                  Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
            _, _))
        .Times(1)
        .WillRepeatedly(Return(
            EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
  }
  if (expected_streams_active[2]) {
    EXPECT_CALL(encoder_callback_,
                OnEncodedImage(
                    AllOf(Field(&EncodedImage::_frameType, frame_type),
                          Field(&EncodedImage::_encodedWidth, kDefaultWidth),
                          Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
                    _, _))
        .Times(1)
        .WillRepeatedly(Return(
            EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
  }
}

void SimulcastTestFixtureImpl::ExpectStreams(FrameType frame_type,
                                             int expected_video_streams) {
  ASSERT_GE(expected_video_streams, 0);
  ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
  std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
  for (int i = 0; i < expected_video_streams; ++i) {
    expected_streams_active[i] = true;
  }
  ExpectStreams(frame_type, expected_streams_active);
}

void SimulcastTestFixtureImpl::VerifyTemporalIdxAndSyncForAllSpatialLayers(
    TestEncodedImageCallback* encoder_callback,
    const int* expected_temporal_idx,
    const bool* expected_layer_sync,
    int num_spatial_layers) {
  int temporal_layer = -1;
  bool layer_sync = false;
  for (int i = 0; i < num_spatial_layers; i++) {
    encoder_callback->GetLastEncodedFrameInfo(&temporal_layer, &layer_sync, i);
    EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
    EXPECT_EQ(expected_layer_sync[i], layer_sync);
  }
}

// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void SimulcastTestFixtureImpl::TestKeyFrameRequestsOnAllStreams() {
  SetRates(kMaxBitrates[2], 30);  // To get all three streams.
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  frame_types[0] = kVideoFrameKey;
  ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
  frame_types[1] = kVideoFrameKey;
  ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
  frame_types[2] = kVideoFrameKey;
  ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
  ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestPaddingAllStreams() {
  // We should always encode the base layer.
  SetRates(kMinBitrates[0] - 1, 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 1);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 1);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestPaddingTwoStreams() {
  // We have just enough to get only the first stream and padding for two.
  SetRates(kMinBitrates[0], 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 1);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 1);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestPaddingTwoStreamsOneMaxedOut() {
  // We are just below limit of sending second stream, so we should get
  // the first stream maxed out (at |maxBitrate|), and padding for two.
  SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 1);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 1);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestPaddingOneStream() {
  // We have just enough to send two streams, so padding for one stream.
  SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 2);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 2);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestPaddingOneStreamTwoMaxedOut() {
  // We are just below limit of sending third stream, so we should get
  // first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
  SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 2);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 2);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestSendAllStreams() {
  // We have just enough to send all streams.
  SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 3);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 3);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestDisablingStreams() {
  // We should get three media streams.
  SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  ExpectStreams(kVideoFrameKey, 3);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  ExpectStreams(kVideoFrameDelta, 3);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // We should only get two streams and padding for one.
  SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
  ExpectStreams(kVideoFrameDelta, 2);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // We should only get the first stream and padding for two.
  SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
  ExpectStreams(kVideoFrameDelta, 1);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // We don't have enough bitrate for the thumbnail stream, but we should get
  // it anyway with current configuration.
  SetRates(kTargetBitrates[0] - 1, 30);
  ExpectStreams(kVideoFrameDelta, 1);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // We should only get two streams and padding for one.
  SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
  // We get a key frame because a new stream is being enabled.
  ExpectStreams(kVideoFrameKey, 2);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // We should get all three streams.
  SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
  // We get a key frame because a new stream is being enabled.
  ExpectStreams(kVideoFrameKey, 3);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestActiveStreams() {
  // All streams on.
  RunActiveStreamsTest({true, true, true});
  // All streams off.
  RunActiveStreamsTest({false, false, false});
  // Low stream off.
  RunActiveStreamsTest({false, true, true});
  // Middle stream off.
  RunActiveStreamsTest({true, false, true});
  // High stream off.
  RunActiveStreamsTest({true, true, false});
  // Only low stream turned on.
  RunActiveStreamsTest({true, false, false});
  // Only middle stream turned on.
  RunActiveStreamsTest({false, true, false});
  // Only high stream turned on.
  RunActiveStreamsTest({false, false, true});
}

void SimulcastTestFixtureImpl::SwitchingToOneStream(int width, int height) {
  const int* temporal_layer_profile = nullptr;
  // Disable all streams except the last and set the bitrate of the last to
  // 100 kbps. This verifies the way GTP switches to screenshare mode.
  if (codec_type_ == kVideoCodecVP8) {
    settings_.VP8()->numberOfTemporalLayers = 1;
    temporal_layer_profile = kDefaultTemporalLayerProfile;
  } else {
    temporal_layer_profile = kNoTemporalLayerProfile;
  }
  settings_.maxBitrate = 100;
  settings_.startBitrate = 100;
  settings_.width = width;
  settings_.height = height;
  for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
    settings_.simulcastStream[i].maxBitrate = 0;
    settings_.simulcastStream[i].width = settings_.width;
    settings_.simulcastStream[i].height = settings_.height;
    settings_.simulcastStream[i].numberOfTemporalLayers = 1;
  }
  // Setting input image to new resolution.
  input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
  input_buffer_->InitializeData();

  input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
                                    0 /* timestamp_us */));

  // The for loop above did not set the bitrate of the highest layer.
  settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].maxBitrate =
      0;
  // The highest layer has to correspond to the non-simulcast resolution.
  settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
      settings_.width;
  settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
      settings_.height;
  SetUpRateAllocator();
  EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));

  // Encode one frame and verify.
  SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
  std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
                                     kVideoFrameDelta);
  EXPECT_CALL(
      encoder_callback_,
      OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
                           Field(&EncodedImage::_encodedWidth, width),
                           Field(&EncodedImage::_encodedHeight, height)),
                     _, _))
      .Times(1)
      .WillRepeatedly(Return(
          EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));

  // Switch back.
  DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
  // Start at the lowest bitrate for enabling base stream.
  settings_.startBitrate = kMinBitrates[0];
  SetUpRateAllocator();
  EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
  SetRates(settings_.startBitrate, 30);
  ExpectStreams(kVideoFrameKey, 1);
  // Resize |input_frame_| to the new resolution.
  input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
  input_buffer_->InitializeData();
  input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
                                    0 /* timestamp_us */));
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}

void SimulcastTestFixtureImpl::TestSwitchingToOneStream() {
  SwitchingToOneStream(1024, 768);
}

void SimulcastTestFixtureImpl::TestSwitchingToOneOddStream() {
  SwitchingToOneStream(1023, 769);
}

void SimulcastTestFixtureImpl::TestSwitchingToOneSmallStream() {
  SwitchingToOneStream(4, 4);
}

// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers333PatternEncoder() {
  EXPECT_EQ(codec_type_, kVideoCodecVP8);
  TestEncodedImageCallback encoder_callback;
  encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
  SetRates(kMaxBitrates[2], 30);  // To get all three streams.

  int expected_temporal_idx[3] = {-1, -1, -1};
  bool expected_layer_sync[3] = {false, false, false};

  // First frame: #0.
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
  SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #1.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
  SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #2.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
  SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #3.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
  SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #4.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
  SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #5.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
  SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}

// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers321PatternEncoder() {
  EXPECT_EQ(codec_type_, kVideoCodecVP8);
  int temporal_layer_profile[3] = {3, 2, 1};
  SetUpCodec(temporal_layer_profile);
  TestEncodedImageCallback encoder_callback;
  encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
  SetRates(kMaxBitrates[2], 30);  // To get all three streams.

  int expected_temporal_idx[3] = {-1, -1, -1};
  bool expected_layer_sync[3] = {false, false, false};

  // First frame: #0.
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #1.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #2.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #3.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #4.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);

  // Next frame: #5.
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
  SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
  SetExpectedValues3<bool>(false, true, false, expected_layer_sync);
  VerifyTemporalIdxAndSyncForAllSpatialLayers(
      &encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}

void SimulcastTestFixtureImpl::TestStrideEncodeDecode() {
  TestEncodedImageCallback encoder_callback;
  TestDecodedImageCallback decoder_callback;
  encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
  decoder_->RegisterDecodeCompleteCallback(&decoder_callback);

  SetRates(kMaxBitrates[2], 30);  // To get all three streams.
  // Setting two (possibly) problematic use cases for stride:
  // 1. stride > width 2. stride_y != stride_uv/2
  int stride_y = kDefaultWidth + 20;
  int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
  input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
                                     stride_uv, stride_uv);
  input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
                                    0 /* timestamp_us */));

  // Set color.
  int plane_offset[kNumOfPlanes];
  plane_offset[kYPlane] = kColorY;
  plane_offset[kUPlane] = kColorU;
  plane_offset[kVPlane] = kColorV;
  CreateImage(input_buffer_, plane_offset);

  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));

  // Change color.
  plane_offset[kYPlane] += 1;
  plane_offset[kUPlane] += 1;
  plane_offset[kVPlane] += 1;
  CreateImage(input_buffer_, plane_offset);
  input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
  EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));

  EncodedImage encoded_frame;
  // Only encoding one frame - so will be a key frame.
  encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
  EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL, 0));
  encoder_callback.GetLastEncodedFrame(&encoded_frame);
  decoder_->Decode(encoded_frame, false, NULL, 0);
  EXPECT_EQ(2, decoder_callback.DecodedFrames());
}

}  // namespace test
}  // namespace webrtc