1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define _USE_MATH_DEFINES // For VC++ to get M_PI. This has to be first.
#include <cmath>
#include "base/macros.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/quaternion.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace gfx {
namespace {
const double kEpsilon = 1e-7;
void CompareQuaternions(const Quaternion& a, const Quaternion& b) {
EXPECT_FLOAT_EQ(a.x(), b.x());
EXPECT_FLOAT_EQ(a.y(), b.y());
EXPECT_FLOAT_EQ(a.z(), b.z());
EXPECT_FLOAT_EQ(a.w(), b.w());
}
} // namespace
TEST(QuatTest, DefaultConstruction) {
CompareQuaternions(Quaternion(0, 0, 0, 1), Quaternion());
}
TEST(QuatTest, AxisAngleCommon) {
double radians = 0.5;
Quaternion q(Vector3dF(1, 0, 0), radians);
CompareQuaternions(
Quaternion(std::sin(radians / 2), 0, 0, std::cos(radians / 2)), q);
}
TEST(QuatTest, VectorToVectorRotation) {
Quaternion q(Vector3dF(1.0f, 0.0f, 0.0f), Vector3dF(0.0f, 1.0f, 0.0f));
Quaternion r(Vector3dF(0.0f, 0.0f, 1.0f), M_PI_2);
EXPECT_FLOAT_EQ(r.x(), q.x());
EXPECT_FLOAT_EQ(r.y(), q.y());
EXPECT_FLOAT_EQ(r.z(), q.z());
EXPECT_FLOAT_EQ(r.w(), q.w());
}
TEST(QuatTest, AxisAngleWithZeroLengthAxis) {
Quaternion q(Vector3dF(0, 0, 0), 0.5);
// If the axis of zero length, we should assume the default values.
CompareQuaternions(q, Quaternion());
}
TEST(QuatTest, Addition) {
double values[] = {0, 1, 100};
for (size_t i = 0; i < arraysize(values); ++i) {
float t = values[i];
Quaternion a(t, 2 * t, 3 * t, 4 * t);
Quaternion b(5 * t, 4 * t, 3 * t, 2 * t);
Quaternion sum = a + b;
CompareQuaternions(Quaternion(t, t, t, t) * 6, sum);
}
}
TEST(QuatTest, Multiplication) {
struct {
Quaternion a;
Quaternion b;
Quaternion expected;
} cases[] = {
{Quaternion(1, 0, 0, 0), Quaternion(1, 0, 0, 0), Quaternion(0, 0, 0, -1)},
{Quaternion(0, 1, 0, 0), Quaternion(0, 1, 0, 0), Quaternion(0, 0, 0, -1)},
{Quaternion(0, 0, 1, 0), Quaternion(0, 0, 1, 0), Quaternion(0, 0, 0, -1)},
{Quaternion(0, 0, 0, 1), Quaternion(0, 0, 0, 1), Quaternion(0, 0, 0, 1)},
{Quaternion(1, 2, 3, 4), Quaternion(5, 6, 7, 8),
Quaternion(24, 48, 48, -6)},
{Quaternion(5, 6, 7, 8), Quaternion(1, 2, 3, 4),
Quaternion(32, 32, 56, -6)},
};
for (size_t i = 0; i < arraysize(cases); ++i) {
Quaternion product = cases[i].a * cases[i].b;
CompareQuaternions(cases[i].expected, product);
}
}
TEST(QuatTest, Scaling) {
double values[] = {0, 10, 100};
for (size_t i = 0; i < arraysize(values); ++i) {
double s = values[i];
Quaternion q(1, 2, 3, 4);
Quaternion expected(s, 2 * s, 3 * s, 4 * s);
CompareQuaternions(expected, q * s);
CompareQuaternions(expected, s * q);
if (s > 0)
CompareQuaternions(expected, q / (1 / s));
}
}
TEST(QuatTest, Normalization) {
Quaternion q(1, -1, 1, -1);
EXPECT_NEAR(q.Length(), 4, kEpsilon);
q = q.Normalized();
EXPECT_NEAR(q.Length(), 1, kEpsilon);
EXPECT_NEAR(q.x(), 0.5, kEpsilon);
EXPECT_NEAR(q.y(), -0.5, kEpsilon);
EXPECT_NEAR(q.z(), 0.5, kEpsilon);
EXPECT_NEAR(q.w(), -0.5, kEpsilon);
}
TEST(QuatTest, Lerp) {
for (size_t i = 1; i < 100; ++i) {
Quaternion a(0, 0, 0, 0);
Quaternion b(1, 2, 3, 4);
float t = static_cast<float>(i) / 100.0f;
Quaternion interpolated = a.Lerp(b, t);
double s = 1.0 / sqrt(30.0);
CompareQuaternions(Quaternion(1, 2, 3, 4) * s, interpolated);
}
Quaternion a(4, 3, 2, 1);
Quaternion b(1, 2, 3, 4);
CompareQuaternions(a.Normalized(), a.Lerp(b, 0));
CompareQuaternions(b.Normalized(), a.Lerp(b, 1));
CompareQuaternions(Quaternion(1, 1, 1, 1).Normalized(), a.Lerp(b, 0.5));
}
TEST(QuatTest, Slerp) {
Vector3dF axis(1, 1, 1);
double start_radians = -0.5;
double stop_radians = 0.5;
Quaternion start(axis, start_radians);
Quaternion stop(axis, stop_radians);
for (size_t i = 0; i < 100; ++i) {
float t = static_cast<float>(i) / 100.0f;
double radians = (1.0 - t) * start_radians + t * stop_radians;
Quaternion expected(axis, radians);
Quaternion interpolated = start.Slerp(stop, t);
EXPECT_NEAR(expected.x(), interpolated.x(), kEpsilon);
EXPECT_NEAR(expected.y(), interpolated.y(), kEpsilon);
EXPECT_NEAR(expected.z(), interpolated.z(), kEpsilon);
EXPECT_NEAR(expected.w(), interpolated.w(), kEpsilon);
}
}
TEST(QuatTest, SlerpOppositeAngles) {
Vector3dF axis(1, 1, 1);
double start_radians = -M_PI_2;
double stop_radians = M_PI_2;
Quaternion start(axis, start_radians);
Quaternion stop(axis, stop_radians);
// When quaternions are pointed in the fully opposite direction, this is
// ambiguous, so we rotate as per https://www.w3.org/TR/css-transforms-1/
Quaternion expected(axis, 0);
Quaternion interpolated = start.Slerp(stop, 0.5f);
EXPECT_NEAR(expected.x(), interpolated.x(), kEpsilon);
EXPECT_NEAR(expected.y(), interpolated.y(), kEpsilon);
EXPECT_NEAR(expected.z(), interpolated.z(), kEpsilon);
EXPECT_NEAR(expected.w(), interpolated.w(), kEpsilon);
}
} // namespace gfx
|