1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/big_endian.h"
#include <stdint.h>
#include <limits>
#include "base/strings/string_piece.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
TEST(ReadBigEndianTest, ReadSignedPositive) {
uint8_t data[] = {0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x1A, 0x2A};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(0x0A, s8);
EXPECT_EQ(0x0A0B, s16);
EXPECT_EQ(int32_t{0x0A0B0C0D}, s32);
EXPECT_EQ(int64_t{0x0A0B0C0D0E0F1A2All}, s64);
}
TEST(ReadBigEndianTest, ReadSignedNegative) {
uint8_t data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(-1, s8);
EXPECT_EQ(-1, s16);
EXPECT_EQ(-1, s32);
EXPECT_EQ(-1, s64);
}
TEST(ReadBigEndianTest, ReadUnsignedSigned) {
uint8_t data[] = {0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, 0xA1, 0xA2};
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
ReadBigEndian(data, &u8);
ReadBigEndian(data, &u16);
ReadBigEndian(data, &u32);
ReadBigEndian(data, &u64);
EXPECT_EQ(0xA0, u8);
EXPECT_EQ(0xA0B0, u16);
EXPECT_EQ(0xA0B0C0D0, u32);
EXPECT_EQ(0xA0B0C0D0E0F0A1A2ull, u64);
}
TEST(ReadBigEndianTest, TryAll16BitValues) {
using signed_type = int16_t;
uint8_t data[sizeof(signed_type)];
for (int i = std::numeric_limits<signed_type>::min();
i <= std::numeric_limits<signed_type>::max(); i++) {
signed_type expected = i;
signed_type actual = 0;
WriteBigEndian(reinterpret_cast<char*>(data), expected);
ReadBigEndian(data, &actual);
EXPECT_EQ(expected, actual);
}
}
TEST(BigEndianReaderTest, ReadsValues) {
uint8_t data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA,
0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
EXPECT_TRUE(reader.Skip(2));
EXPECT_EQ(data + 2, reader.ptr());
EXPECT_EQ(reader.remaining(), sizeof(data) - 2);
EXPECT_TRUE(reader.ReadBytes(buf, sizeof(buf)));
EXPECT_EQ(0x2, buf[0]);
EXPECT_EQ(0x3, buf[1]);
EXPECT_TRUE(reader.ReadU8(&u8));
EXPECT_EQ(0x4, u8);
EXPECT_TRUE(reader.ReadU16(&u16));
EXPECT_EQ(0x0506, u16);
EXPECT_TRUE(reader.ReadU32(&u32));
EXPECT_EQ(0x0708090Au, u32);
EXPECT_TRUE(reader.ReadU64(&u64));
EXPECT_EQ(0x0B0C0D0E0F1A2B3Cllu, u64);
base::StringPiece expected(reinterpret_cast<const char*>(reader.ptr()), 2);
EXPECT_TRUE(reader.ReadPiece(&piece, 2));
EXPECT_EQ(2u, piece.size());
EXPECT_EQ(expected.data(), piece.data());
}
TEST(BigEndianReaderTest, ReadsLengthPrefixedValues) {
{
uint8_t u8_prefixed_data[] = {8, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u8_prefixed_data, sizeof(u8_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU8LengthPrefixed(&piece));
// |reader| should skip both a u8 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u8_prefixed_data + 9);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u8_prefixed_data + 1);
}
{
uint8_t u16_prefixed_data[] = {0, 8, 0xD, 0xE, 0xF,
0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
// |reader| should skip both a u16 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 10);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
// With no data left, we shouldn't be able to
// read another u8 length prefix (or a u16 length prefix,
// for that matter).
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
}
{
// Make sure there's no issue reading a zero-value length prefix.
uint8_t u16_prefixed_data[3] = {};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 2);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
EXPECT_EQ(piece.size(), 0u);
}
}
TEST(BigEndianReaderTest, LengthPrefixedReadsFailGracefully) {
// We can't read 0xF (or, for that matter, 0xF8) bytes after the length
// prefix: there isn't enough data.
uint8_t data[] = {0xF, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(data, sizeof(data));
base::StringPiece piece;
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
}
TEST(BigEndianReaderTest, RespectsLength) {
uint8_t data[8];
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
// 8 left
EXPECT_FALSE(reader.Skip(9));
EXPECT_TRUE(reader.Skip(1));
// 7 left
EXPECT_FALSE(reader.ReadU64(&u64));
EXPECT_TRUE(reader.Skip(4));
// 3 left
EXPECT_FALSE(reader.ReadU32(&u32));
EXPECT_FALSE(reader.ReadPiece(&piece, 4));
EXPECT_TRUE(reader.Skip(2));
// 1 left
EXPECT_FALSE(reader.ReadU16(&u16));
EXPECT_FALSE(reader.ReadBytes(buf, 2));
EXPECT_TRUE(reader.Skip(1));
// 0 left
EXPECT_FALSE(reader.ReadU8(&u8));
EXPECT_EQ(0u, reader.remaining());
}
TEST(BigEndianReaderTest, SafePointerMath) {
uint8_t data[] = "foo";
BigEndianReader reader(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
char* dummy_buf = reinterpret_cast<char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
base::StringPiece piece;
EXPECT_FALSE(reader.Skip(extreme_length));
EXPECT_FALSE(reader.ReadBytes(dummy_buf, extreme_length));
EXPECT_FALSE(reader.ReadPiece(&piece, extreme_length));
}
TEST(BigEndianWriterTest, WritesValues) {
char expected[] = { 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE,
0xF, 0x1A, 0x2B, 0x3C };
char data[sizeof(expected)];
char buf[] = { 0x2, 0x3 };
memset(data, 0, sizeof(data));
BigEndianWriter writer(data, sizeof(data));
EXPECT_TRUE(writer.Skip(2));
EXPECT_TRUE(writer.WriteBytes(buf, sizeof(buf)));
EXPECT_TRUE(writer.WriteU8(0x4));
EXPECT_TRUE(writer.WriteU16(0x0506));
EXPECT_TRUE(writer.WriteU32(0x0708090A));
EXPECT_TRUE(writer.WriteU64(0x0B0C0D0E0F1A2B3Cllu));
EXPECT_EQ(0, memcmp(expected, data, sizeof(expected)));
}
TEST(BigEndianWriterTest, RespectsLength) {
char data[8];
char buf[2];
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
BigEndianWriter writer(data, sizeof(data));
// 8 left
EXPECT_FALSE(writer.Skip(9));
EXPECT_TRUE(writer.Skip(1));
// 7 left
EXPECT_FALSE(writer.WriteU64(u64));
EXPECT_TRUE(writer.Skip(4));
// 3 left
EXPECT_FALSE(writer.WriteU32(u32));
EXPECT_TRUE(writer.Skip(2));
// 1 left
EXPECT_FALSE(writer.WriteU16(u16));
EXPECT_FALSE(writer.WriteBytes(buf, 2));
EXPECT_TRUE(writer.Skip(1));
// 0 left
EXPECT_FALSE(writer.WriteU8(u8));
EXPECT_EQ(0u, writer.remaining());
}
TEST(BigEndianWriterTest, SafePointerMath) {
char data[3];
BigEndianWriter writer(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
const char* dummy_buf = reinterpret_cast<const char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
EXPECT_FALSE(writer.Skip(extreme_length));
EXPECT_FALSE(writer.WriteBytes(dummy_buf, extreme_length));
}
} // namespace base
|