1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This is a framework to measure the memory overhead of different containers.
// Under the hood, it works by logging allocations and frees using an allocator
// hook.
//
// Since the free callback does not report a size, and the allocator hooks run
// in the middle of allocation, the logger simply takes the simplest approach
// and logs out the raw data, relying on analyze_containers_memory_usage.py to
// turn the raw output into useful numbers.
//
// The output of consists of m (number of different key/value combinations being
// tested) x n (number of different map types being tested) sections:
//
// <key type 1> -> <value type 1>
// ===== <map type 1> =====
// iteration 0
// alloc <address 1> size <size 1>
// iteration 1
// alloc <address 2> size <size 2>
// free <address 1>
// iteration 2
// alloc <address 3> size <size 3>
// free <address 2>
// ...
// ...
// ...
// ===== <map type n>
// iteration 0
// alloc <address 1000> size <size 1000>
// iteration 1
// alloc <address 1001> size <size 1001>
// free <address 1000>
// iteration 2
// alloc <address 1002> size <size 1002>
// free <address 1001>
// ...
// ...
// ...
// <key type m> -> <value type m>
// ===== <map type 1> =====
// ...
// ...
// ===== <map type n> =====
//
// Alternate output strategies are possible, but most of them are worse/more
// complex, and do not eliminate the postprocessing step.
#include <array>
#include <atomic>
#include <charconv>
#include <limits>
#include <map>
#include <string>
#include <unordered_map>
#include <utility>
#include "base/allocator/dispatcher/dispatcher.h"
#include "base/containers/flat_map.h"
#include "base/logging.h"
#include "base/strings/safe_sprintf.h"
#include "base/unguessable_token.h"
#include "base/values.h"
#include "third_party/abseil-cpp/absl/container/btree_map.h"
#include "third_party/abseil-cpp/absl/container/flat_hash_map.h"
#include "third_party/abseil-cpp/absl/container/node_hash_map.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace {
std::atomic<bool> log_allocs_and_frees;
struct AllocationLogger {
public:
void OnAllocation(void* address,
size_t size,
base::allocator::dispatcher::AllocationSubsystem sub_system,
const char* type_name) {
if (log_allocs_and_frees.load(std::memory_order_acquire)) {
char buffer[128];
// Assume success; ignore return value.
base::strings::SafeSPrintf(buffer, "alloc address %p size %d\n", address,
size);
RAW_LOG(INFO, buffer);
}
}
void OnFree(void* address) {
if (log_allocs_and_frees.load(std::memory_order_acquire)) {
char buffer[128];
// Assume success; ignore return value.
base::strings::SafeSPrintf(buffer, "freed address %p\n", address);
RAW_LOG(INFO, buffer);
}
}
static void Install() {
static AllocationLogger logger;
base::allocator::dispatcher::Dispatcher::GetInstance().InitializeForTesting(
&logger);
}
};
class ScopedLogAllocAndFree {
public:
ScopedLogAllocAndFree() {
log_allocs_and_frees.store(true, std::memory_order_release);
}
~ScopedLogAllocAndFree() {
log_allocs_and_frees.store(false, std::memory_order_release);
}
};
// Measures the memory usage for a container with type `Container` from 0 to
// 6857 elements, using `inserter` to insert a single element at a time.
// `inserter` should be a functor that takes a `Container& container` as its
// first parameter and a `size_t current_index` as its second parameter.
//
// Note that `inserter` can't use `base::FunctionRef` since the inserter is
// passed through several layers before actually being instantiated below in
// this function.
template <typename Container, typename Inserter>
void MeasureOneContainer(const Inserter& inserter) {
char buffer[128];
RAW_LOG(INFO, "iteration 0");
// Record any initial allocations made by an empty container.
absl::optional<ScopedLogAllocAndFree> base_size_logger;
base_size_logger.emplace();
Container c;
base_size_logger.reset();
// As a hack, also log out sizeof(c) since the initial base size of the
// container should be counted too. The exact placeholder used for the address
// (in this case "(stack)") isn't important as long as it will not have a
// corresponding free line logged for it.
base::strings::SafeSPrintf(buffer, "alloc address (stack) size %d",
sizeof(c));
RAW_LOG(INFO, buffer);
// Swisstables resizes the backing store around 6858 elements.
for (size_t i = 1; i <= 6857; ++i) {
base::strings::SafeSPrintf(buffer, "iteration %d", i);
RAW_LOG(INFO, buffer);
inserter(c, i);
}
}
// Measures the memory usage for all the container types under test. `inserter`
// is used to insert a single element at a time into the tested container.
template <typename K, typename V, typename Inserter>
void Measure(const Inserter& inserter) {
using Hasher = std::conditional_t<std::is_same_v<base::UnguessableToken, K>,
base::UnguessableTokenHash, std::hash<K>>;
RAW_LOG(INFO, "===== base::flat_map =====");
MeasureOneContainer<base::flat_map<K, V>>(inserter);
RAW_LOG(INFO, "===== std::map =====");
MeasureOneContainer<std::map<K, V>>(inserter);
RAW_LOG(INFO, "===== std::unordered_map =====");
MeasureOneContainer<std::unordered_map<K, V, Hasher>>(inserter);
RAW_LOG(INFO, "===== absl::btree_map =====");
MeasureOneContainer<absl::btree_map<K, V>>(inserter);
RAW_LOG(INFO, "===== absl::flat_hash_map =====");
MeasureOneContainer<absl::flat_hash_map<K, V, Hasher>>(inserter);
RAW_LOG(INFO, "===== absl::node_hash_map =====");
MeasureOneContainer<absl::node_hash_map<K, V, Hasher>>(inserter);
}
} // namespace
int main() {
AllocationLogger::Install();
RAW_LOG(INFO, "int -> int");
Measure<int, int>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, 0});
});
RAW_LOG(INFO, "int -> void*");
Measure<int, void*>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, nullptr});
});
RAW_LOG(INFO, "int -> std::string");
Measure<int, std::string>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, ""});
});
RAW_LOG(INFO, "size_t -> int");
Measure<size_t, int>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, 0});
});
RAW_LOG(INFO, "size_t -> void*");
Measure<size_t, void*>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, nullptr});
});
RAW_LOG(INFO, "size_t -> std::string");
Measure<size_t, std::string>([](auto& container, size_t i) {
ScopedLogAllocAndFree scoped_logging;
container.insert({i, ""});
});
RAW_LOG(INFO, "std::string -> std::string");
Measure<std::string, std::string>([](auto& container, size_t i) {
std::string key;
key.resize(std::numeric_limits<size_t>::digits10 + 1);
auto result = std::to_chars(&key.front(), &key.back(), i);
key.resize(result.ptr - &key.front());
ScopedLogAllocAndFree scoped_logging;
container.insert({key, ""});
});
RAW_LOG(INFO, "base::UnguessableToken -> void*");
Measure<base::UnguessableToken, void*>([](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, nullptr});
});
RAW_LOG(INFO, "base::UnguessableToken -> base::Value");
Measure<base::UnguessableToken, base::Value>([](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
base::Value value;
ScopedLogAllocAndFree scoped_logging;
container.insert({token, std::move(value)});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 4>");
Measure<base::UnguessableToken, std::array<std::string, 4>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 8>");
Measure<base::UnguessableToken, std::array<std::string, 8>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
RAW_LOG(INFO, "base::UnguessableToken -> std::array<std::string, 16>");
Measure<base::UnguessableToken, std::array<std::string, 16>>(
[](auto& container, size_t i) {
auto token = base::UnguessableToken::Create();
ScopedLogAllocAndFree scoped_logging;
container.insert({token, {}});
});
return 0;
}
|