1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/containers/flat_set.h"
#include <string>
#include "base/memory/ptr_util.h"
#include "base/test/move_only_int.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
// A flat_set is basically a interface to flat_tree. So several basic
// operations are tested to make sure things are set up properly, but the bulk
// of the tests are in flat_tree_unittests.cc.
using ::testing::ElementsAre;
namespace base {
namespace {
class ImplicitInt {
public:
// NOLINTNEXTLINE(google-explicit-constructor)
ImplicitInt(int data) : data_(data) {}
private:
friend bool operator<(const ImplicitInt& lhs, const ImplicitInt& rhs) {
return lhs.data_ < rhs.data_;
}
int data_;
};
} // namespace
TEST(FlatSet, IncompleteType) {
struct A {
using Set = flat_set<A>;
int data;
Set set_with_incomplete_type;
Set::iterator it;
Set::const_iterator cit;
// We do not declare operator< because clang complains that it's unused.
};
A a;
}
TEST(FlatSet, RangeConstructor) {
flat_set<int>::value_type input_vals[] = {1, 1, 1, 2, 2, 2, 3, 3, 3};
flat_set<int> cont(std::begin(input_vals), std::end(input_vals));
EXPECT_THAT(cont, ElementsAre(1, 2, 3));
}
TEST(FlatSet, MoveConstructor) {
int input_range[] = {1, 2, 3, 4};
flat_set<MoveOnlyInt> original(std::begin(input_range),
std::end(input_range));
flat_set<MoveOnlyInt> moved(std::move(original));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(1)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(2)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(3)));
EXPECT_EQ(1U, moved.count(MoveOnlyInt(4)));
}
TEST(FlatSet, InitializerListConstructor) {
flat_set<int> cont({1, 2, 3, 4, 5, 6, 10, 8});
EXPECT_THAT(cont, ElementsAre(1, 2, 3, 4, 5, 6, 8, 10));
}
TEST(FlatSet, InsertFindSize) {
base::flat_set<int> s;
s.insert(1);
s.insert(1);
s.insert(2);
EXPECT_EQ(2u, s.size());
EXPECT_EQ(1, *s.find(1));
EXPECT_EQ(2, *s.find(2));
EXPECT_EQ(s.end(), s.find(7));
}
TEST(FlatSet, CopySwap) {
base::flat_set<int> original;
original.insert(1);
original.insert(2);
EXPECT_THAT(original, ElementsAre(1, 2));
base::flat_set<int> copy(original);
EXPECT_THAT(copy, ElementsAre(1, 2));
copy.erase(copy.begin());
copy.insert(10);
EXPECT_THAT(copy, ElementsAre(2, 10));
original.swap(copy);
EXPECT_THAT(original, ElementsAre(2, 10));
EXPECT_THAT(copy, ElementsAre(1, 2));
}
TEST(FlatSet, UsingTransparentCompare) {
using ExplicitInt = base::MoveOnlyInt;
base::flat_set<ExplicitInt> s;
const auto& s1 = s;
int x = 0;
// Check if we can use lookup functions without converting to key_type.
// Correctness is checked in flat_tree tests.
s.count(x);
s1.count(x);
s.find(x);
s1.find(x);
s.contains(x);
s1.contains(x);
s.equal_range(x);
s1.equal_range(x);
s.lower_bound(x);
s1.lower_bound(x);
s.upper_bound(x);
s1.upper_bound(x);
s.erase(x);
// Check if we broke overload resolution.
s.emplace(0);
s.emplace(1);
s.erase(s.begin());
s.erase(s.cbegin());
}
TEST(FlatSet, UsingInitializerList) {
base::flat_set<ImplicitInt> s;
const auto& s1 = s;
// Check if the calls can be resolved. Correctness is checked in flat_tree
// tests.
s.count({1});
s1.count({2});
s.find({3});
s1.find({4});
s.contains({5});
s1.contains({6});
s.equal_range({7});
s1.equal_range({8});
s.lower_bound({9});
s1.lower_bound({10});
s.upper_bound({11});
s1.upper_bound({12});
s.erase({13});
}
} // namespace base
|