1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_FLAT_TREE_H_
#define BASE_CONTAINERS_FLAT_TREE_H_
#include <algorithm>
#include <array>
#include <initializer_list>
#include <iterator>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/not_fn.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/ranges/algorithm.h"
namespace base {
// Tag type that allows skipping the sort_and_unique step when constructing a
// flat_tree in case the underlying container is already sorted and has no
// duplicate elements.
struct sorted_unique_t {
constexpr explicit sorted_unique_t() = default;
};
extern sorted_unique_t sorted_unique;
namespace internal {
// Helper functions used in DCHECKs below to make sure that inputs tagged with
// sorted_unique are indeed sorted and unique.
template <typename Range, typename Comp>
constexpr bool is_sorted_and_unique(const Range& range, Comp comp) {
// Being unique implies that there are no adjacent elements that
// compare equal. So this checks that each element is strictly less
// than the element after it.
return ranges::adjacent_find(range, base::not_fn(comp)) == ranges::end(range);
}
// This is a convenience trait inheriting from std::true_type if Iterator is at
// least a ForwardIterator and thus supports multiple passes over a range.
template <class Iterator>
using is_multipass = std::is_base_of<
std::forward_iterator_tag,
typename std::iterator_traits<Iterator>::iterator_category>;
// Uses SFINAE to detect whether type has is_transparent member.
template <typename T, typename = void>
struct IsTransparentCompare : std::false_type {};
template <typename T>
struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>>
: std::true_type {};
// Helper inspired by C++20's std::to_array to convert a C-style array to a
// std::array. As opposed to the C++20 version this implementation does not
// provide an overload for rvalues and does not strip cv qualifers from the
// returned std::array::value_type. The returned value_type needs to be
// specified explicitly, allowing the construction of std::arrays with const
// elements.
//
// Reference: https://en.cppreference.com/w/cpp/container/array/to_array
template <typename U, typename T, size_t N, size_t... I>
constexpr std::array<U, N> ToArrayImpl(const T (&data)[N],
std::index_sequence<I...>) {
return {{data[I]...}};
}
template <typename U, typename T, size_t N>
constexpr std::array<U, N> ToArray(const T (&data)[N]) {
return ToArrayImpl<U>(data, std::make_index_sequence<N>());
}
// Helper that calls `container.reserve(std::size(source))`.
template <typename T, typename U>
constexpr void ReserveIfSupported(const T&, const U&) {}
template <typename T, typename U>
auto ReserveIfSupported(T& container, const U& source)
-> decltype(container.reserve(std::size(source)), void()) {
container.reserve(std::size(source));
}
// std::pair's operator= is not constexpr prior to C++20. Thus we need this
// small helper to invoke operator= on the .first and .second member explicitly.
template <typename T>
constexpr void Assign(T& lhs, T&& rhs) {
lhs = std::move(rhs);
}
template <typename T, typename U>
constexpr void Assign(std::pair<T, U>& lhs, std::pair<T, U>&& rhs) {
Assign(lhs.first, std::move(rhs.first));
Assign(lhs.second, std::move(rhs.second));
}
// constexpr swap implementation. std::swap is not constexpr prior to C++20.
template <typename T>
constexpr void Swap(T& lhs, T& rhs) {
T tmp = std::move(lhs);
Assign(lhs, std::move(rhs));
Assign(rhs, std::move(tmp));
}
// constexpr prev implementation. std::prev is not constexpr prior to C++17.
template <typename BidirIt>
constexpr BidirIt Prev(BidirIt it) {
return --it;
}
// constexpr next implementation. std::next is not constexpr prior to C++17.
template <typename InputIt>
constexpr InputIt Next(InputIt it) {
return ++it;
}
// constexpr sort implementation. std::sort is not constexpr prior to C++20.
// While insertion sort has a quadratic worst case complexity, it was chosen
// because it has linear complexity for nearly sorted data, is stable, and
// simple to implement.
template <typename BidirIt, typename Compare>
constexpr void InsertionSort(BidirIt first, BidirIt last, const Compare& comp) {
if (first == last)
return;
for (auto it = Next(first); it != last; ++it) {
for (auto curr = it; curr != first && comp(*curr, *Prev(curr)); --curr)
Swap(*curr, *Prev(curr));
}
}
// Implementation -------------------------------------------------------------
// Implementation for the sorted associative flat_set and flat_map using a
// sorted vector as the backing store. Do not use directly.
//
// The use of "value" in this is like std::map uses, meaning it's the thing
// contained (in the case of map it's a <Key, Mapped> pair). The Key is how
// things are looked up. In the case of a set, Key == Value. In the case of
// a map, the Key is a component of a Value.
//
// The helper class GetKeyFromValue provides the means to extract a key from a
// value for comparison purposes. It should implement:
// const Key& operator()(const Value&).
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
class flat_tree {
public:
// --------------------------------------------------------------------------
// Types.
//
using key_type = Key;
using key_compare = KeyCompare;
using value_type = typename Container::value_type;
// Wraps the templated key comparison to compare values.
struct value_compare {
constexpr bool operator()(const value_type& left,
const value_type& right) const {
GetKeyFromValue extractor;
return comp(extractor(left), extractor(right));
}
NO_UNIQUE_ADDRESS key_compare comp;
};
using pointer = typename Container::pointer;
using const_pointer = typename Container::const_pointer;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using difference_type = typename Container::difference_type;
using iterator = typename Container::iterator;
using const_iterator = typename Container::const_iterator;
using reverse_iterator = typename Container::reverse_iterator;
using const_reverse_iterator = typename Container::const_reverse_iterator;
using container_type = Container;
// --------------------------------------------------------------------------
// Lifetime.
//
// Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
// and take O(N * log(N)) + O(N) if extra memory is available (N is a range
// length).
//
// Assume that move constructors invalidate iterators and references.
//
// The constructors that take ranges, lists, and vectors do not require that
// the input be sorted.
//
// When passing the base::sorted_unique tag as the first argument no sort and
// unique step takes places. This is useful if the underlying container
// already has the required properties.
flat_tree() = default;
flat_tree(const flat_tree&) = default;
flat_tree(flat_tree&&) = default;
explicit flat_tree(const key_compare& comp);
template <class InputIterator>
flat_tree(InputIterator first,
InputIterator last,
const key_compare& comp = key_compare());
flat_tree(const container_type& items,
const key_compare& comp = key_compare());
flat_tree(container_type&& items, const key_compare& comp = key_compare());
flat_tree(std::initializer_list<value_type> ilist,
const key_compare& comp = key_compare());
template <class InputIterator>
flat_tree(sorted_unique_t,
InputIterator first,
InputIterator last,
const key_compare& comp = key_compare());
flat_tree(sorted_unique_t,
const container_type& items,
const key_compare& comp = key_compare());
constexpr flat_tree(sorted_unique_t,
container_type&& items,
const key_compare& comp = key_compare());
flat_tree(sorted_unique_t,
std::initializer_list<value_type> ilist,
const key_compare& comp = key_compare());
~flat_tree() = default;
// --------------------------------------------------------------------------
// Assignments.
//
// Assume that move assignment invalidates iterators and references.
flat_tree& operator=(const flat_tree&) = default;
flat_tree& operator=(flat_tree&&) = default;
// Takes the first if there are duplicates in the initializer list.
flat_tree& operator=(std::initializer_list<value_type> ilist);
// --------------------------------------------------------------------------
// Memory management.
//
// Beware that shrink_to_fit() simply forwards the request to the
// container_type and its implementation is free to optimize otherwise and
// leave capacity() to be greater that its size.
//
// reserve() and shrink_to_fit() invalidate iterators and references.
void reserve(size_type new_capacity);
size_type capacity() const;
void shrink_to_fit();
// --------------------------------------------------------------------------
// Size management.
//
// clear() leaves the capacity() of the flat_tree unchanged.
void clear();
constexpr size_type size() const;
constexpr size_type max_size() const;
constexpr bool empty() const;
// --------------------------------------------------------------------------
// Iterators.
//
// Iterators follow the ordering defined by the key comparator used in
// construction of the flat_tree.
iterator begin();
constexpr const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
constexpr const_iterator end() const;
const_iterator cend() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;
// --------------------------------------------------------------------------
// Insert operations.
//
// Assume that every operation invalidates iterators and references.
// Insertion of one element can take O(size). Capacity of flat_tree grows in
// an implementation-defined manner.
//
// NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
// instead of calling insert() repeatedly.
std::pair<iterator, bool> insert(const value_type& val);
std::pair<iterator, bool> insert(value_type&& val);
iterator insert(const_iterator position_hint, const value_type& x);
iterator insert(const_iterator position_hint, value_type&& x);
// This method inserts the values from the range [first, last) into the
// current tree.
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position_hint, Args&&... args);
// --------------------------------------------------------------------------
// Underlying type operations.
//
// Assume that either operation invalidates iterators and references.
// Extracts the container_type and returns it to the caller. Ensures that
// `this` is `empty()` afterwards.
container_type extract() &&;
// Replaces the container_type with `body`. Expects that `body` is sorted
// and has no repeated elements with regard to value_comp().
void replace(container_type&& body);
// --------------------------------------------------------------------------
// Erase operations.
//
// Assume that every operation invalidates iterators and references.
//
// erase(position), erase(first, last) can take O(size).
// erase(key) may take O(size) + O(log(size)).
//
// Prefer base::EraseIf() or some other variation on erase(remove(), end())
// idiom when deleting multiple non-consecutive elements.
iterator erase(iterator position);
// Artificially templatized to break ambiguity if `iterator` and
// `const_iterator` are the same type.
template <typename DummyT = void>
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
size_type erase(const Key& key);
template <typename K>
size_type erase(const K& key);
// --------------------------------------------------------------------------
// Comparators.
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
// --------------------------------------------------------------------------
// Search operations.
//
// Search operations have O(log(size)) complexity.
size_type count(const Key& key) const;
template <typename K>
size_type count(const K& key) const;
iterator find(const Key& key);
const_iterator find(const Key& key) const;
template <typename K>
iterator find(const K& key);
template <typename K>
const_iterator find(const K& key) const;
bool contains(const Key& key) const;
template <typename K>
bool contains(const K& key) const;
std::pair<iterator, iterator> equal_range(const Key& key);
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const;
template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;
iterator lower_bound(const Key& key);
const_iterator lower_bound(const Key& key) const;
template <typename K>
iterator lower_bound(const K& key);
template <typename K>
const_iterator lower_bound(const K& key) const;
iterator upper_bound(const Key& key);
const_iterator upper_bound(const Key& key) const;
template <typename K>
iterator upper_bound(const K& key);
template <typename K>
const_iterator upper_bound(const K& key) const;
// --------------------------------------------------------------------------
// General operations.
//
// Assume that swap invalidates iterators and references.
//
// Implementation note: currently we use operator==() and operator<() on
// std::vector, because they have the same contract we need, so we use them
// directly for brevity and in case it is more optimal than calling equal()
// and lexicograhpical_compare(). If the underlying container type is changed,
// this code may need to be modified.
void swap(flat_tree& other) noexcept;
friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
return lhs.body_ == rhs.body_;
}
friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) {
return lhs.body_ < rhs.body_;
}
friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) {
return rhs < lhs;
}
friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) {
return !(lhs < rhs);
}
friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) {
return !(lhs > rhs);
}
friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); }
protected:
// Emplaces a new item into the tree that is known not to be in it. This
// is for implementing map operator[].
template <class... Args>
iterator unsafe_emplace(const_iterator position, Args&&... args);
// Attempts to emplace a new element with key |key|. Only if |key| is not yet
// present, construct value_type from |args| and insert it. Returns an
// iterator to the element with key |key| and a bool indicating whether an
// insertion happened.
template <class K, class... Args>
std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);
// Similar to |emplace_key_args|, but checks |hint| first as a possible
// insertion position.
template <class K, class... Args>
std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
const K& key,
Args&&... args);
private:
// Helper class for e.g. lower_bound that can compare a value on the left
// to a key on the right.
struct KeyValueCompare {
// The key comparison object must outlive this class.
explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {}
template <typename T, typename U>
bool operator()(const T& lhs, const U& rhs) const {
return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
}
private:
const key_type& extract_if_value_type(const value_type& v) const {
GetKeyFromValue extractor;
return extractor(v);
}
template <typename K>
const K& extract_if_value_type(const K& k) const {
return k;
}
// This field was not rewritten into `const raw_ref<const key_compare>` due
// to binary size increase. There's also little value to rewriting this
// member as it points to `flat_tree::comp_`. The flat_tree itself should be
// holding raw_ptr/raw_ref if necessary.
RAW_PTR_EXCLUSION const key_compare& comp_;
};
iterator const_cast_it(const_iterator c_it) {
auto distance = std::distance(cbegin(), c_it);
return std::next(begin(), distance);
}
// This method is inspired by both std::map::insert(P&&) and
// std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
// element is not present yet, otherwise it overwrites. It returns an iterator
// to the modified element and a flag indicating whether insertion or
// assignment happened.
template <class V>
std::pair<iterator, bool> insert_or_assign(V&& val) {
auto position = lower_bound(GetKeyFromValue()(val));
if (position == end() || value_comp()(val, *position))
return {body_.emplace(position, std::forward<V>(val)), true};
*position = std::forward<V>(val);
return {position, false};
}
// This method is similar to insert_or_assign, with the following differences:
// - Instead of searching [begin(), end()) it only searches [first, last).
// - In case no equivalent element is found, val is appended to the end of the
// underlying body and an iterator to the next bigger element in [first,
// last) is returned.
template <class V>
std::pair<iterator, bool> append_or_assign(iterator first,
iterator last,
V&& val) {
auto position = std::lower_bound(first, last, val, value_comp());
if (position == last || value_comp()(val, *position)) {
// emplace_back might invalidate position, which is why distance needs to
// be cached.
const difference_type distance = std::distance(begin(), position);
body_.emplace_back(std::forward<V>(val));
return {std::next(begin(), distance), true};
}
*position = std::forward<V>(val);
return {position, false};
}
// This method is similar to insert, with the following differences:
// - Instead of searching [begin(), end()) it only searches [first, last).
// - In case no equivalent element is found, val is appended to the end of the
// underlying body and an iterator to the next bigger element in [first,
// last) is returned.
template <class V>
std::pair<iterator, bool> append_unique(iterator first,
iterator last,
V&& val) {
auto position = std::lower_bound(first, last, val, value_comp());
if (position == last || value_comp()(val, *position)) {
// emplace_back might invalidate position, which is why distance needs to
// be cached.
const difference_type distance = std::distance(begin(), position);
body_.emplace_back(std::forward<V>(val));
return {std::next(begin(), distance), true};
}
return {position, false};
}
void sort_and_unique(iterator first, iterator last) {
// Preserve stability for the unique code below.
std::stable_sort(first, last, value_comp());
// lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs.
auto equal_comp = base::not_fn(value_comp());
erase(std::unique(first, last, equal_comp), last);
}
void sort_and_unique() { sort_and_unique(begin(), end()); }
// To support comparators that may not be possible to default-construct, we
// have to store an instance of Compare. Since Compare commonly is stateless,
// we use the NO_UNIQUE_ADDRESS attribute to save space.
NO_UNIQUE_ADDRESS key_compare comp_;
// Declare after |key_compare_comp_| to workaround GCC ICE. For details
// see https://crbug.com/1156268
container_type body_;
// If the compare is not transparent we want to construct key_type once.
template <typename K>
using KeyTypeOrK = typename std::
conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type;
};
// ----------------------------------------------------------------------------
// Lifetime.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
const KeyCompare& comp)
: comp_(comp) {}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
InputIterator first,
InputIterator last,
const KeyCompare& comp)
: comp_(comp), body_(first, last) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
const container_type& items,
const KeyCompare& comp)
: comp_(comp), body_(items) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
container_type&& items,
const KeyCompare& comp)
: comp_(comp), body_(std::move(items)) {
sort_and_unique();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
std::initializer_list<value_type> ilist,
const KeyCompare& comp)
: flat_tree(std::begin(ilist), std::end(ilist), comp) {}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
InputIterator first,
InputIterator last,
const KeyCompare& comp)
: comp_(comp), body_(first, last) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
const container_type& items,
const KeyCompare& comp)
: comp_(comp), body_(items) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
container_type&& items,
const KeyCompare& comp)
: comp_(comp), body_(std::move(items)) {
DCHECK(is_sorted_and_unique(*this, value_comp()));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
sorted_unique_t,
std::initializer_list<value_type> ilist,
const KeyCompare& comp)
: flat_tree(sorted_unique, std::begin(ilist), std::end(ilist), comp) {}
// ----------------------------------------------------------------------------
// Assignments.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=(
std::initializer_list<value_type> ilist) -> flat_tree& {
body_ = ilist;
sort_and_unique();
return *this;
}
// ----------------------------------------------------------------------------
// Memory management.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve(
size_type new_capacity) {
body_.reserve(new_capacity);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const
-> size_type {
return body_.capacity();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() {
body_.shrink_to_fit();
}
// ----------------------------------------------------------------------------
// Size management.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() {
body_.clear();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size()
const -> size_type {
return body_.size();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const
-> size_type {
return body_.max_size();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty()
const {
return body_.empty();
}
// ----------------------------------------------------------------------------
// Iterators.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
-> iterator {
return body_.begin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
const -> const_iterator {
return ranges::begin(body_);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const
-> const_iterator {
return body_.cbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator {
return body_.end();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end()
const -> const_iterator {
return ranges::end(body_);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const
-> const_iterator {
return body_.cend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin()
-> reverse_iterator {
return body_.rbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const
-> const_reverse_iterator {
return body_.rbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const
-> const_reverse_iterator {
return body_.crbegin();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend()
-> reverse_iterator {
return body_.rend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const
-> const_reverse_iterator {
return body_.rend();
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const
-> const_reverse_iterator {
return body_.crend();
}
// ----------------------------------------------------------------------------
// Insert operations.
//
// Currently we use position_hint the same way as eastl or boost:
// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const value_type& val) -> std::pair<iterator, bool> {
return emplace_key_args(GetKeyFromValue()(val), val);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
value_type&& val) -> std::pair<iterator, bool> {
return emplace_key_args(GetKeyFromValue()(val), std::move(val));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const_iterator position_hint,
const value_type& val) -> iterator {
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
const_iterator position_hint,
value_type&& val) -> iterator {
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
std::move(val))
.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class InputIterator>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
InputIterator first,
InputIterator last) {
if (first == last)
return;
// Dispatch to single element insert if the input range contains a single
// element.
if (is_multipass<InputIterator>() && std::next(first) == last) {
insert(end(), *first);
return;
}
// Provide a convenience lambda to obtain an iterator pointing past the last
// old element. This needs to be dymanic due to possible re-allocations.
auto middle = [this, size = size()] {
return std::next(begin(), static_cast<difference_type>(size));
};
// For batch updates initialize the first insertion point.
auto pos_first_new = static_cast<difference_type>(size());
// Loop over the input range while appending new values and overwriting
// existing ones, if applicable. Keep track of the first insertion point.
for (; first != last; ++first) {
std::pair<iterator, bool> result = append_unique(begin(), middle(), *first);
if (result.second) {
pos_first_new =
std::min(pos_first_new, std::distance(begin(), result.first));
}
}
// The new elements might be unordered and contain duplicates, so post-process
// the just inserted elements and merge them with the rest, inserting them at
// the previously found spot.
sort_and_unique(middle(), end());
std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(),
value_comp());
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace(
Args&&... args) -> std::pair<iterator, bool> {
return insert(value_type(std::forward<Args>(args)...));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint(
const_iterator position_hint,
Args&&... args) -> iterator {
return insert(position_hint, value_type(std::forward<Args>(args)...));
}
// ----------------------------------------------------------------------------
// Underlying type operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
extract() && -> container_type {
return std::exchange(body_, container_type());
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace(
container_type&& body) {
// Ensure that `body` is sorted and has no repeated elements according to
// `value_comp()`.
DCHECK(is_sorted_and_unique(body, value_comp()));
body_ = std::move(body);
}
// ----------------------------------------------------------------------------
// Erase operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
iterator position) -> iterator {
CHECK(position != body_.end());
return body_.erase(position);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename DummyT>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const_iterator position) -> iterator {
CHECK(position != body_.end());
return body_.erase(position);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const Key& val) -> size_type {
auto eq_range = equal_range(val);
auto res =
static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
erase(eq_range.first, eq_range.second);
return res;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val)
-> size_type {
auto eq_range = equal_range(val);
auto res =
static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
erase(eq_range.first, eq_range.second);
return res;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
const_iterator first,
const_iterator last) -> iterator {
return body_.erase(first, last);
}
// ----------------------------------------------------------------------------
// Comparators.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const
-> key_compare {
return comp_;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
constexpr auto
flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const
-> value_compare {
return value_compare{comp_};
}
// ----------------------------------------------------------------------------
// Search operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
const K& key) const -> size_type {
auto eq_range = equal_range(key);
return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
const Key& key) const -> size_type {
auto eq_range = equal_range(key);
return static_cast<size_type>(std::distance(eq_range.first, eq_range.second));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).find(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const Key& key) const -> const_iterator {
auto eq_range = equal_range(key);
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key)
-> iterator {
return const_cast_it(std::as_const(*this).find(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
const K& key) const -> const_iterator {
auto eq_range = equal_range(key);
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
const Key& key) const {
auto lower = lower_bound(key);
return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
const K& key) const {
auto lower = lower_bound(key);
return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const Key& key) -> std::pair<iterator, iterator> {
auto res = std::as_const(*this).equal_range(key);
return {const_cast_it(res.first), const_cast_it(res.second)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const Key& key) const -> std::pair<const_iterator, const_iterator> {
auto lower = lower_bound(key);
KeyValueCompare comp(comp_);
if (lower == end() || comp(key, *lower))
return {lower, lower};
return {lower, std::next(lower)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const K& key) -> std::pair<iterator, iterator> {
auto res = std::as_const(*this).equal_range(key);
return {const_cast_it(res.first), const_cast_it(res.second)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
const K& key) const -> std::pair<const_iterator, const_iterator> {
auto lower = lower_bound(key);
KeyValueCompare comp(comp_);
if (lower == end() || comp(key, *lower))
return {lower, lower};
return {lower, std::next(lower)};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).lower_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const Key& key) const -> const_iterator {
KeyValueCompare comp(comp_);
return ranges::lower_bound(*this, key, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const K& key) -> iterator {
return const_cast_it(std::as_const(*this).lower_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
const K& key) const -> const_iterator {
static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
"Requested type cannot be bound to the container's key_type "
"which is required for a non-transparent compare.");
const KeyTypeOrK<K>& key_ref = key;
KeyValueCompare comp(comp_);
return ranges::lower_bound(*this, key_ref, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const Key& key) -> iterator {
return const_cast_it(std::as_const(*this).upper_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const Key& key) const -> const_iterator {
KeyValueCompare comp(comp_);
return ranges::upper_bound(*this, key, comp);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const K& key) -> iterator {
return const_cast_it(std::as_const(*this).upper_bound(key));
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <typename K>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
const K& key) const -> const_iterator {
static_assert(std::is_convertible_v<const KeyTypeOrK<K>&, const K&>,
"Requested type cannot be bound to the container's key_type "
"which is required for a non-transparent compare.");
const KeyTypeOrK<K>& key_ref = key;
KeyValueCompare comp(comp_);
return ranges::upper_bound(*this, key_ref, comp);
}
// ----------------------------------------------------------------------------
// General operations.
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap(
flat_tree& other) noexcept {
std::swap(*this, other);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace(
const_iterator position,
Args&&... args) -> iterator {
return body_.emplace(position, std::forward<Args>(args)...);
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args(
const K& key,
Args&&... args) -> std::pair<iterator, bool> {
auto lower = lower_bound(key);
if (lower == end() || comp_(key, GetKeyFromValue()(*lower)))
return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
return {lower, false};
}
template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
template <class K, class... Args>
auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args)
-> std::pair<iterator, bool> {
KeyValueCompare comp(comp_);
if ((hint == begin() || comp(*std::prev(hint), key))) {
if (hint == end() || comp(key, *hint)) {
// *(hint - 1) < key < *hint => key did not exist and hint is correct.
return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
}
if (!comp(*hint, key)) {
// key == *hint => no-op, return correct hint.
return {const_cast_it(hint), false};
}
}
// hint was not helpful, dispatch to hintless version.
return emplace_key_args(key, std::forward<Args>(args)...);
}
} // namespace internal
// ----------------------------------------------------------------------------
// Free functions.
// Erases all elements that match predicate. It has O(size) complexity.
template <class Key,
class GetKeyFromValue,
class KeyCompare,
class Container,
typename Predicate>
size_t EraseIf(
base::internal::flat_tree<Key, GetKeyFromValue, KeyCompare, Container>&
container,
Predicate pred) {
auto it = ranges::remove_if(container, pred);
size_t removed = std::distance(it, container.end());
container.erase(it, container.end());
return removed;
}
} // namespace base
#endif // BASE_CONTAINERS_FLAT_TREE_H_
|