1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SPAN_H_
#define BASE_CONTAINERS_SPAN_H_
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <iterator>
#include <limits>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/contiguous_iterator.h"
#include "base/cxx20_to_address.h"
#include "base/numerics/safe_conversions.h"
#include "base/template_util.h"
namespace base {
// [views.constants]
constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();
template <typename T,
size_t Extent = dynamic_extent,
typename InternalPtrType = T*>
class span;
namespace internal {
template <size_t I>
using size_constant = std::integral_constant<size_t, I>;
template <typename T>
struct ExtentImpl : size_constant<dynamic_extent> {};
template <typename T, size_t N>
struct ExtentImpl<T[N]> : size_constant<N> {};
template <typename T, size_t N>
struct ExtentImpl<std::array<T, N>> : size_constant<N> {};
template <typename T, size_t N>
struct ExtentImpl<base::span<T, N>> : size_constant<N> {};
template <typename T>
using Extent = ExtentImpl<remove_cvref_t<T>>;
template <typename T>
struct IsSpanImpl : std::false_type {};
template <typename T, size_t Extent>
struct IsSpanImpl<span<T, Extent>> : std::true_type {};
template <typename T>
using IsNotSpan = std::negation<IsSpanImpl<std::decay_t<T>>>;
template <typename T>
struct IsStdArrayImpl : std::false_type {};
template <typename T, size_t N>
struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
template <typename T>
using IsNotStdArray = std::negation<IsStdArrayImpl<std::decay_t<T>>>;
template <typename T>
using IsNotCArray = std::negation<std::is_array<std::remove_reference_t<T>>>;
template <typename From, typename To>
using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;
template <typename Iter, typename T>
using IteratorHasConvertibleReferenceType =
IsLegalDataConversion<std::remove_reference_t<iter_reference_t<Iter>>, T>;
template <typename Iter, typename T>
using EnableIfCompatibleContiguousIterator = std::enable_if_t<
std::conjunction_v<IsContiguousIterator<Iter>,
IteratorHasConvertibleReferenceType<Iter, T>>>;
template <typename Container, typename T>
using ContainerHasConvertibleData = IsLegalDataConversion<
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>,
T>;
template <typename Container>
using ContainerHasIntegralSize =
std::is_integral<decltype(std::size(std::declval<Container>()))>;
template <typename From, size_t FromExtent, typename To, size_t ToExtent>
using EnableIfLegalSpanConversion =
std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&
IsLegalDataConversion<From, To>::value>;
// SFINAE check if Array can be converted to a span<T>.
template <typename Array, typename T, size_t Extent>
using EnableIfSpanCompatibleArray =
std::enable_if_t<(Extent == dynamic_extent ||
Extent == internal::Extent<Array>::value) &&
ContainerHasConvertibleData<Array, T>::value>;
// SFINAE check if Container can be converted to a span<T>.
template <typename Container, typename T>
using IsSpanCompatibleContainer =
std::conjunction<IsNotSpan<Container>,
IsNotStdArray<Container>,
IsNotCArray<Container>,
ContainerHasConvertibleData<Container, T>,
ContainerHasIntegralSize<Container>>;
template <typename Container, typename T>
using EnableIfSpanCompatibleContainer =
std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value>;
template <typename Container, typename T, size_t Extent>
using EnableIfSpanCompatibleContainerAndSpanIsDynamic =
std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value &&
Extent == dynamic_extent>;
// A helper template for storing the size of a span. Spans with static extents
// don't require additional storage, since the extent itself is specified in the
// template parameter.
template <size_t Extent>
class ExtentStorage {
public:
constexpr explicit ExtentStorage(size_t size) noexcept {}
constexpr size_t size() const noexcept { return Extent; }
};
// Specialization of ExtentStorage for dynamic extents, which do require
// explicit storage for the size.
template <>
struct ExtentStorage<dynamic_extent> {
constexpr explicit ExtentStorage(size_t size) noexcept : size_(size) {}
constexpr size_t size() const noexcept { return size_; }
private:
size_t size_;
};
// must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a
// constexpr context.
template <size_t kExtent>
constexpr size_t must_not_be_dynamic_extent() {
static_assert(
kExtent != dynamic_extent,
"EXTENT should only be used for containers with a static extent.");
return kExtent;
}
} // namespace internal
// A span is a value type that represents an array of elements of type T. Since
// it only consists of a pointer to memory with an associated size, it is very
// light-weight. It is cheap to construct, copy, move and use spans, so that
// users are encouraged to use it as a pass-by-value parameter. A span does not
// own the underlying memory, so care must be taken to ensure that a span does
// not outlive the backing store.
//
// span is somewhat analogous to std::string_view, but with arbitrary element
// types, allowing mutation if T is non-const.
//
// span is implicitly convertible from C++ arrays, as well as most [1]
// container-like types that provide a data() and size() method (such as
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
// immutable span<const T>.
//
// Consider using a span for functions that take a data pointer and size
// parameter: it allows the function to still act on an array-like type, while
// allowing the caller code to be a bit more concise.
//
// For read-only data access pass a span<const T>: the caller can supply either
// a span<const T> or a span<T>, while the callee will have a read-only view.
// For read-write access a mutable span<T> is required.
//
// Without span:
// Read-Only:
// // std::string HexEncode(const uint8_t* data, size_t size);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
//
// Mutable:
// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
//
// With span:
// Read-Only:
// // std::string HexEncode(base::span<const uint8_t> data);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer);
//
// Mutable:
// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
//
// Spans with "const" and pointers
// -------------------------------
//
// Const and pointers can get confusing. Here are vectors of pointers and their
// corresponding spans:
//
// const std::vector<int*> => base::span<int* const>
// std::vector<const int*> => base::span<const int*>
// const std::vector<const int*> => base::span<const int* const>
//
// Differences from the C++20 draft
// --------------------------------
//
// http://eel.is/c++draft/views contains the latest C++20 draft of std::span.
// Chromium tries to follow the draft as close as possible. Differences between
// the draft and the implementation are documented in subsections below.
//
// Differences from [span.objectrep]:
// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
// std::byte (std::byte is a C++17 feature)
//
// Differences from [span.cons]:
// - Constructing a static span (i.e. Extent != dynamic_extent) from a dynamic
// sized container (e.g. std::vector) requires an explicit conversion (in the
// C++20 draft this is simply UB)
//
// Furthermore, all constructors and methods are marked noexcept due to the lack
// of exceptions in Chromium.
//
// Due to the lack of class template argument deduction guides in C++14
// appropriate make_span() utility functions are provided.
// [span], class template span
template <typename T, size_t Extent, typename InternalPtrType>
class GSL_POINTER span : public internal::ExtentStorage<Extent> {
private:
using ExtentStorage = internal::ExtentStorage<Extent>;
public:
using element_type = T;
using value_type = std::remove_cv_t<T>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = CheckedContiguousIterator<T>;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_t extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
constexpr span() noexcept : ExtentStorage(0), data_(nullptr) {
static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");
}
template <typename It,
typename = internal::EnableIfCompatibleContiguousIterator<It, T>>
constexpr span(It first, StrictNumeric<size_t> count) noexcept
: ExtentStorage(count),
// The use of to_address() here is to handle the case where the iterator
// `first` is pointing to the container's `end()`. In that case we can
// not use the address returned from the iterator, or dereference it
// through the iterator's `operator*`, but we can store it. We must
// assume in this case that `count` is 0, since the iterator does not
// point to valid data. Future hardening of iterators may disallow
// pulling the address from `end()`, as demonstrated by asserts() in
// libstdc++: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960.
//
// The span API dictates that the `data()` is accessible when size is 0,
// since the pointer may be valid, so we cannot prevent storing and
// giving out an invalid pointer here without breaking API compatibility
// and our unit tests. Thus protecting against this can likely only be
// successful from inside iterators themselves, where the context about
// the pointer is known.
//
// We can not protect here generally against an invalid iterator/count
// being passed in, since we have no context to determine if the
// iterator or count are valid.
data_(base::to_address(first)) {
CHECK(Extent == dynamic_extent || Extent == count);
}
template <typename It,
typename End,
typename = internal::EnableIfCompatibleContiguousIterator<It, T>,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
constexpr span(It begin, End end) noexcept
// Subtracting two iterators gives a ptrdiff_t, but the result should be
// non-negative: see CHECK below.
: span(begin, static_cast<size_t>(end - begin)) {
// Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
CHECK(begin <= end);
}
template <
size_t N,
typename = internal::EnableIfSpanCompatibleArray<T (&)[N], T, Extent>>
constexpr span(T (&array)[N]) noexcept : span(std::data(array), N) {}
template <
typename U,
size_t N,
typename =
internal::EnableIfSpanCompatibleArray<std::array<U, N>&, T, Extent>>
constexpr span(std::array<U, N>& array) noexcept
: span(std::data(array), N) {}
template <typename U,
size_t N,
typename = internal::
EnableIfSpanCompatibleArray<const std::array<U, N>&, T, Extent>>
constexpr span(const std::array<U, N>& array) noexcept
: span(std::data(array), N) {}
// Conversion from a container that has compatible std::data() and integral
// std::size().
template <
typename Container,
typename =
internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<Container&,
T,
Extent>>
constexpr span(Container& container) noexcept
: span(std::data(container), std::size(container)) {}
template <
typename Container,
typename = internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<
const Container&,
T,
Extent>>
constexpr span(const Container& container) noexcept
: span(std::data(container), std::size(container)) {}
constexpr span(const span& other) noexcept = default;
// Conversions from spans of compatible types and extents: this allows a
// span<T> to be seamlessly used as a span<const T>, but not the other way
// around. If extent is not dynamic, OtherExtent has to be equal to Extent.
template <
typename U,
size_t OtherExtent,
typename =
internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>
constexpr span(const span<U, OtherExtent>& other)
: span(other.data(), other.size()) {}
constexpr span& operator=(const span& other) noexcept = default;
~span() noexcept = default;
// [span.sub], span subviews
template <size_t Count>
constexpr span<T, Count> first() const noexcept {
static_assert(Count <= Extent, "Count must not exceed Extent");
CHECK(Extent != dynamic_extent || Count <= size());
return {data(), Count};
}
template <size_t Count>
constexpr span<T, Count> last() const noexcept {
static_assert(Count <= Extent, "Count must not exceed Extent");
CHECK(Extent != dynamic_extent || Count <= size());
return {data() + (size() - Count), Count};
}
template <size_t Offset, size_t Count = dynamic_extent>
constexpr span<T,
(Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent))>
subspan() const noexcept {
static_assert(Offset <= Extent, "Offset must not exceed Extent");
static_assert(Count == dynamic_extent || Count <= Extent - Offset,
"Count must not exceed Extent - Offset");
CHECK(Extent != dynamic_extent || Offset <= size());
CHECK(Extent != dynamic_extent || Count == dynamic_extent ||
Count <= size() - Offset);
return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
}
constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
// Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
CHECK(count <= size());
return {data(), count};
}
constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
// Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
CHECK(count <= size());
return {data() + (size() - count), count};
}
constexpr span<T, dynamic_extent> subspan(size_t offset,
size_t count = dynamic_extent) const
noexcept {
// Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
CHECK(offset <= size());
CHECK(count == dynamic_extent || count <= size() - offset);
return {data() + offset, count != dynamic_extent ? count : size() - offset};
}
// [span.obs], span observers
constexpr size_t size() const noexcept { return ExtentStorage::size(); }
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
// [span.elem], span element access
constexpr T& operator[](size_t idx) const noexcept {
// Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
CHECK(idx < size());
return *(data() + idx);
}
constexpr T& front() const noexcept {
static_assert(Extent == dynamic_extent || Extent > 0,
"Extent must not be 0");
CHECK(Extent != dynamic_extent || !empty());
return *data();
}
constexpr T& back() const noexcept {
static_assert(Extent == dynamic_extent || Extent > 0,
"Extent must not be 0");
CHECK(Extent != dynamic_extent || !empty());
return *(data() + size() - 1);
}
constexpr T* data() const noexcept { return data_; }
// [span.iter], span iterator support
constexpr iterator begin() const noexcept {
return iterator(data(), data() + size());
}
constexpr iterator end() const noexcept {
return iterator(data(), data() + size(), data() + size());
}
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(end());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(begin());
}
private:
// This field is not a raw_ptr<> because it was filtered by the rewriter
// for: #constexpr-ctor-field-initializer, #global-scope, #union
InternalPtrType data_;
};
// span<T, Extent>::extent can not be declared inline prior to C++17, hence this
// definition is required.
template <class T, size_t Extent, typename InternalPtrType>
constexpr size_t span<T, Extent, InternalPtrType>::extent;
template <typename It,
typename T = std::remove_reference_t<iter_reference_t<It>>>
span(It, StrictNumeric<size_t>) -> span<T>;
template <typename It,
typename End,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>,
typename T = std::remove_reference_t<iter_reference_t<It>>>
span(It, End) -> span<T>;
template <typename T, size_t N>
span(T (&)[N]) -> span<T, N>;
template <typename T, size_t N>
span(std::array<T, N>&) -> span<T, N>;
template <typename T, size_t N>
span(const std::array<T, N>&) -> span<const T, N>;
template <typename Container,
typename T = std::remove_pointer_t<
decltype(std::data(std::declval<Container>()))>,
size_t X = internal::Extent<Container>::value>
span(Container&&) -> span<T, X>;
// [span.objectrep], views of object representation
template <typename T, size_t X>
span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
as_bytes(span<T, X> s) noexcept {
return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
}
template <typename T,
size_t X,
typename = std::enable_if_t<!std::is_const_v<T>>>
span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
as_writable_bytes(span<T, X> s) noexcept {
return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
}
// Type-deducing helpers for constructing a span.
template <int&... ExplicitArgumentBarrier, typename It>
constexpr auto make_span(It it, StrictNumeric<size_t> size) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T>(it, size);
}
template <int&... ExplicitArgumentBarrier,
typename It,
typename End,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
constexpr auto make_span(It it, End end) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T>(it, end);
}
// make_span utility function that deduces both the span's value_type and extent
// from the passed in argument.
//
// Usage: auto span = base::make_span(...);
template <int&... ExplicitArgumentBarrier, typename Container>
constexpr auto make_span(Container&& container) noexcept {
using T =
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
using Extent = internal::Extent<Container>;
return span<T, Extent::value>(std::forward<Container>(container));
}
// make_span utility functions that allow callers to explicit specify the span's
// extent, the value_type is deduced automatically. This is useful when passing
// a dynamically sized container to a method expecting static spans, when the
// container is known to have the correct size.
//
// Note: This will CHECK that N indeed matches size(container).
//
// Usage: auto static_span = base::make_span<N>(...);
template <size_t N, int&... ExplicitArgumentBarrier, typename It>
constexpr auto make_span(It it, StrictNumeric<size_t> size) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T, N>(it, size);
}
template <size_t N,
int&... ExplicitArgumentBarrier,
typename It,
typename End,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
constexpr auto make_span(It it, End end) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T, N>(it, end);
}
template <size_t N, int&... ExplicitArgumentBarrier, typename Container>
constexpr auto make_span(Container&& container) noexcept {
using T =
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
return span<T, N>(std::data(container), std::size(container));
}
} // namespace base
// EXTENT returns the size of any type that can be converted to a |base::span|
// with definite extent, i.e. everything that is a contiguous storage of some
// sort with static size. Specifically, this works for std::array in a constexpr
// context. Note:
// * |std::size| should be preferred for plain arrays.
// * In run-time contexts, functions such as |std::array::size| should be
// preferred.
#define EXTENT(x) \
::base::internal::must_not_be_dynamic_extent<decltype( \
::base::make_span(x))::extent>()
#endif // BASE_CONTAINERS_SPAN_H_
|