1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <thread>
#include <vector>
#include "base/debug/allocation_trace.h"
#include "base/strings/stringprintf.h"
#include "base/timer/lap_timer.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
namespace base {
namespace debug {
namespace {
// Change kTimeLimit to something higher if you need more time to capture a
// trace.
constexpr base::TimeDelta kTimeLimit = base::Seconds(3);
constexpr int kWarmupRuns = 100;
constexpr int kTimeCheckInterval = 1000;
constexpr char kMetricStackTraceDuration[] = ".duration_per_run";
constexpr char kMetricStackTraceThroughput[] = ".throughput";
enum class HandlerFunctionSelector { OnAllocation, OnFree };
// An executor to perform the actual notification of the recorder. The correct
// handler function is selected using template specialization based on the
// HandlerFunctionSelector.
template <HandlerFunctionSelector HandlerFunction>
struct HandlerFunctionExecutor {
void operator()(base::debug::tracer::AllocationTraceRecorder& recorder) const;
};
template <>
struct HandlerFunctionExecutor<HandlerFunctionSelector::OnAllocation> {
void operator()(
base::debug::tracer::AllocationTraceRecorder& recorder) const {
// Since the recorder just stores the value, we can use any value for
// address and size that we want.
recorder.OnAllocation(
&recorder, sizeof(recorder),
base::allocator::dispatcher::AllocationSubsystem::kPartitionAllocator,
nullptr);
}
};
template <>
struct HandlerFunctionExecutor<HandlerFunctionSelector::OnFree> {
void operator()(
base::debug::tracer::AllocationTraceRecorder& recorder) const {
recorder.OnFree(&recorder);
}
};
} // namespace
class AllocationTraceRecorderPerfTest
: public testing::TestWithParam<
std::tuple<HandlerFunctionSelector, size_t>> {
protected:
// The result data of a single thread. From the results of all the single
// threads the final results will be calculated.
struct ResultData {
TimeDelta time_per_lap;
float laps_per_second = 0.0;
int number_of_laps = 0;
};
// The data of a single test thread.
struct ThreadRunnerData {
std::thread thread;
ResultData result_data;
};
// Create and setup the result reporter.
const char* GetHandlerDescriptor(HandlerFunctionSelector handler_function);
perf_test::PerfResultReporter SetUpReporter(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads);
// Select the correct test function which shall be used for the current test.
using TestFunction =
void (*)(base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data);
static TestFunction GetTestFunction(HandlerFunctionSelector handler_function);
template <HandlerFunctionSelector HandlerFunction>
static void TestFunctionImplementation(
base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data);
// The test management function. Using the the above auxiliary functions it is
// responsible to setup the result reporter, select the correct test function,
// spawn the specified number of worker threads and post process the results.
void PerformTest(HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads);
};
const char* AllocationTraceRecorderPerfTest::GetHandlerDescriptor(
HandlerFunctionSelector handler_function) {
switch (handler_function) {
case HandlerFunctionSelector::OnAllocation:
return "OnAllocation";
case HandlerFunctionSelector::OnFree:
return "OnFree";
}
}
perf_test::PerfResultReporter AllocationTraceRecorderPerfTest::SetUpReporter(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads) {
const std::string story_name = base::StringPrintf(
"(%s;%zu-threads)", GetHandlerDescriptor(handler_function),
number_of_allocating_threads);
perf_test::PerfResultReporter reporter("AllocationRecorderPerf", story_name);
reporter.RegisterImportantMetric(kMetricStackTraceDuration, "ns");
reporter.RegisterImportantMetric(kMetricStackTraceThroughput, "runs/s");
return reporter;
}
AllocationTraceRecorderPerfTest::TestFunction
AllocationTraceRecorderPerfTest::GetTestFunction(
HandlerFunctionSelector handler_function) {
switch (handler_function) {
case HandlerFunctionSelector::OnAllocation:
return TestFunctionImplementation<HandlerFunctionSelector::OnAllocation>;
case HandlerFunctionSelector::OnFree:
return TestFunctionImplementation<HandlerFunctionSelector::OnFree>;
}
}
void AllocationTraceRecorderPerfTest::PerformTest(
HandlerFunctionSelector handler_function,
size_t number_of_allocating_threads) {
perf_test::PerfResultReporter reporter =
SetUpReporter(handler_function, number_of_allocating_threads);
TestFunction test_function = GetTestFunction(handler_function);
base::debug::tracer::AllocationTraceRecorder the_recorder;
std::vector<ThreadRunnerData> notifying_threads;
notifying_threads.reserve(number_of_allocating_threads);
// Setup the threads. After creation, each thread immediately starts running.
// We expect the creation of the threads to be so quick that the delay from
// first to last thread is negligible.
for (size_t i = 0; i < number_of_allocating_threads; ++i) {
auto& last_item = notifying_threads.emplace_back();
last_item.thread = std::thread{test_function, std::ref(the_recorder),
std::ref(last_item.result_data)};
}
TimeDelta average_time_per_lap;
float average_laps_per_second = 0;
// Wait for each thread to finish and collect its result data.
for (auto& item : notifying_threads) {
item.thread.join();
// When finishing, each threads writes its results into result_data. So,
// from here we gather its performance statistics.
average_time_per_lap += item.result_data.time_per_lap;
average_laps_per_second += item.result_data.laps_per_second;
}
average_time_per_lap /= number_of_allocating_threads;
average_laps_per_second /= number_of_allocating_threads;
reporter.AddResult(kMetricStackTraceDuration, average_time_per_lap);
reporter.AddResult(kMetricStackTraceThroughput, average_laps_per_second);
}
template <HandlerFunctionSelector HandlerFunction>
void AllocationTraceRecorderPerfTest::TestFunctionImplementation(
base::debug::tracer::AllocationTraceRecorder& recorder,
ResultData& result_data) {
LapTimer timer(kWarmupRuns, kTimeLimit, kTimeCheckInterval,
LapTimer::TimerMethod::kUseTimeTicks);
HandlerFunctionExecutor<HandlerFunction> handler_executor;
timer.Start();
do {
handler_executor(recorder);
timer.NextLap();
} while (!timer.HasTimeLimitExpired());
result_data.time_per_lap = timer.TimePerLap();
result_data.laps_per_second = timer.LapsPerSecond();
result_data.number_of_laps = timer.NumLaps();
}
INSTANTIATE_TEST_SUITE_P(
,
AllocationTraceRecorderPerfTest,
::testing::Combine(::testing::Values(HandlerFunctionSelector::OnAllocation,
HandlerFunctionSelector::OnFree),
::testing::Values(1, 5, 10, 20, 40, 80)));
TEST_P(AllocationTraceRecorderPerfTest, TestNotification) {
const auto parameters = GetParam();
const HandlerFunctionSelector handler_function = std::get<0>(parameters);
const size_t number_of_threads = std::get<1>(parameters);
PerformTest(handler_function, number_of_threads);
}
} // namespace debug
} // namespace base
|