1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_
#include <stddef.h>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_buildflags.h"
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_config.h"
#include "base/allocator/partition_allocator/src/partition_alloc/pointers/raw_ptr.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/callback_internal.h"
#include "base/functional/disallow_unretained.h"
#include "base/functional/unretained_traits.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
#include "base/memory/raw_ref.h"
#include "base/memory/raw_scoped_refptr_mismatch_checker.h"
#include "base/memory/weak_ptr.h"
#include "base/notreached.h"
#include "base/types/always_false.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
// See base/functional/callback.h for user documentation.
//
//
// CONCEPTS:
// Functor -- A movable type representing something that should be called.
// All function pointers and Callback<> are functors even if the
// invocation syntax differs.
// RunType -- A function type (as opposed to function _pointer_ type) for
// a Callback<>::Run(). Usually just a convenience typedef.
// (Bound)Args -- A set of types that stores the arguments.
//
// Types:
// ForceVoidReturn<> -- Helper class for translating function signatures to
// equivalent forms with a "void" return type.
// FunctorTraits<> -- Type traits used to determine the correct RunType and
// invocation manner for a Functor. This is where function
// signature adapters are applied.
// StorageTraits<> -- Type traits that determine how a bound argument is
// stored in BindState.
// InvokeHelper<> -- Take a Functor + arguments and actually invokes it.
// Handle the differing syntaxes needed for WeakPtr<>
// support. This is separate from Invoker to avoid creating
// multiple version of Invoker<>.
// Invoker<> -- Unwraps the curried parameters and executes the Functor.
// BindState<> -- Stores the curried parameters, and is the main entry point
// into the Bind() system.
#if BUILDFLAG(IS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
} // namespace WRL
} // namespace Microsoft
#endif
namespace base {
template <typename T>
struct IsWeakReceiver;
template <typename>
struct BindUnwrapTraits;
template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
struct CallbackCancellationTraits;
template <typename Signature>
class FunctionRef;
namespace unretained_traits {
// UnretainedWrapper will check and report if pointer is dangling upon
// invocation.
struct MayNotDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. For
// extra safety, the receiver must be of type MayBeDangling<>.
struct MayDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. The
// receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to
// allow dangling pointers that would otherwise crash if MayNotDangle was used.
// It should be replaced ASAP with MayNotDangle (after fixing the dangling
// pointers) or with MayDangle if there is really no other way (after making
// receivers MayBeDangling<>).
struct MayDangleUntriaged {};
} // namespace unretained_traits
namespace internal {
template <typename Functor, typename SFINAE = void>
struct FunctorTraits;
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedWrapper {
// Note that if PtrTraits already includes MayDangle, DanglingRawPtrType
// will be identical to `raw_ptr<T, PtrTraits>`.
using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;
public:
// We want the getter type to match the receiver parameter that it is passed
// into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
// match `StorageType`, but sometimes we can't have both, as shown in
// https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
// When we can't have both, prefer the former, mostly because
// `GetPtrType`=`raw_ptr<T>` would break if e.g. UnretainedWrapper() is
// constructed using `char*`, but the receiver is of type `std::string&`.
// This is enforced by static_asserts in base::internal::AssertConstructible.
using GetPtrType = std::conditional_t<
raw_ptr_traits::IsSupportedType<T>::value &&
std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>,
DanglingRawPtrType,
T*>;
static_assert(TypeSupportsUnretainedV<T>,
"Callback cannot capture an unprotected C++ pointer since this "
"Type is annotated with DISALLOW_UNRETAINED(). Please see "
"base/functional/disallow_unretained.h for alternatives.");
// Raw pointer makes sense only if there are no PtrTraits. If there are,
// it means that a `raw_ptr` is being passed, so use the ctors below instead.
template <RawPtrTraits PTraits = PtrTraits,
typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
explicit UnretainedWrapper(T* o) : ptr_(o) {}
// Trick to only instantiate these constructors if they are used. Otherwise,
// instantiating UnretainedWrapper with a T that is not supported by
// raw_ptr would trigger raw_ptr<T>'s static_assert.
template <typename U = T>
explicit UnretainedWrapper(const raw_ptr<U, PtrTraits>& o) : ptr_(o) {}
template <typename U = T>
explicit UnretainedWrapper(raw_ptr<U, PtrTraits>&& o) : ptr_(std::move(o)) {}
GetPtrType get() const { return GetInternal(ptr_); }
private:
// `ptr_` is either a `raw_ptr` or a regular C++ pointer.
template <typename U>
static GetPtrType GetInternal(U* ptr) {
static_assert(std::is_same_v<T, U>);
return ptr;
}
template <typename U, RawPtrTraits Traits>
static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
static_assert(std::is_same_v<T, U>);
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ptr.ReportIfDangling();
}
return ptr;
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ptr_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
DanglingRawPtrType,
T*>;
// Avoid converting between different `raw_ptr` types when calling `get()`.
// It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
// direction. See the comment by `GetPtrType` describing for more details.
static_assert(std::is_pointer_v<GetPtrType> ||
std::is_same_v<GetPtrType, StorageType>);
StorageType ptr_;
};
// Storage type for std::reference_wrapper so `BindState` can internally store
// unprotected references using raw_ref.
//
// std::reference_wrapper<T> and T& do not work, since the reference lifetime is
// not safely protected by MiraclePtr.
//
// UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would
// try to pass by T* rather than T&.
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedRefWrapper {
public:
static_assert(
TypeSupportsUnretainedV<T>,
"Callback cannot capture an unprotected C++ reference since this "
"type is annotated with DISALLOW_UNRETAINED(). Please see "
"base/functional/disallow_unretained.h for alternatives.");
// Raw reference makes sense only if there are no PtrTraits. If there are,
// it means that a `raw_ref` is being passed, so use the ctors below instead.
template <RawPtrTraits PTraits = PtrTraits,
typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
explicit UnretainedRefWrapper(T& o) : ref_(o) {}
// Trick to only instantiate these constructors if they are used. Otherwise,
// instantiating UnretainedWrapper with a T that is not supported by
// raw_ref would trigger raw_ref<T>'s static_assert.
template <typename U = T>
explicit UnretainedRefWrapper(const raw_ref<U, PtrTraits>& o) : ref_(o) {}
template <typename U = T>
explicit UnretainedRefWrapper(raw_ref<U, PtrTraits>&& o)
: ref_(std::move(o)) {}
T& get() const { return GetInternal(ref_); }
private:
// `ref_` is either a `raw_ref` or a regular C++ reference.
template <typename U>
static T& GetInternal(U& ref) {
static_assert(std::is_same_v<T, U>);
return ref;
}
template <typename U, RawPtrTraits Traits>
static T& GetInternal(const raw_ref<U, Traits>& ref) {
static_assert(std::is_same_v<T, U>);
// The ultimate goal is to crash when a callback is invoked with a
// dangling pointer. This is checked here. For now, it is configured to
// either crash, DumpWithoutCrashing or be ignored. This depends on the
// PartitionAllocUnretainedDanglingPtr feature.
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ref.ReportIfDangling();
}
// We can't use operator* here, we need to use raw_ptr's GetForExtraction
// instead of GetForDereference. If we did use GetForDereference then we'd
// crash in ASAN builds on calling a bound callback with a dangling
// reference parameter even if that parameter is not used. This could hide
// a later unprotected issue that would be reached in release builds.
return ref.get();
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ref_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
raw_ref<T, DisableDanglingPtrDetection>,
T&>;
StorageType ref_;
};
// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
// a method receiver (a reference on `this` argument). This is needed because
// the internal callback mechanism expects the receiver to have the type
// `MyClass*` and to have `operator*`.
// This is used as storage.
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
class UnretainedRefWrapperReceiver {
public:
// NOLINTNEXTLINE(google-explicit-constructor)
UnretainedRefWrapperReceiver(
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& obj)
: obj_(std::move(obj)) {}
// NOLINTNEXTLINE(google-explicit-constructor)
T& operator*() const { return obj_.get(); }
private:
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
};
// MethodReceiverStorageType converts the current receiver type to its stored
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
// `UnretainedRefWrapper` to make it compliant with the internal callback
// invocation mechanism.
template <typename T>
struct MethodReceiverStorageType {
using Type =
std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>;
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct MethodReceiverStorageType<
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
// We can't use UnretainedRefWrapper as a receiver directly (see
// UnretainedRefWrapperReceiver for why).
using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
};
template <typename T>
class RetainedRefWrapper {
public:
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
T* get() const { return ptr_.get(); }
private:
scoped_refptr<T> ptr_;
};
template <typename T>
struct IgnoreResultHelper {
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
explicit operator bool() const { return !!functor_; }
T functor_;
};
template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
public:
explicit OwnedWrapper(T* o) : ptr_(o) {}
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
: ptr_(std::move(ptr)) {}
T* get() const { return ptr_.get(); }
private:
std::unique_ptr<T, Deleter> ptr_;
};
template <typename T>
class OwnedRefWrapper {
public:
explicit OwnedRefWrapper(const T& t) : t_(t) {}
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
T& get() const { return t_; }
private:
mutable T t_;
};
// PassedWrapper is a copyable adapter for a scoper that ignores const.
//
// It is needed to get around the fact that Bind() takes a const reference to
// all its arguments. Because Bind() takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into Bind() would violate
// the const correctness.
//
// This conundrum cannot be solved without either C++11 rvalue references or
// a O(2^n) blowup of Bind() templates to handle each combination of regular
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
// that is copyable to transmit the correct type information down into
// BindState<>. Ignoring const in this type makes sense because it is only
// created when we are explicitly trying to do a destructive move.
//
// Two notes:
// 1) PassedWrapper supports any type that has a move constructor, however
// the type will need to be specifically allowed in order for it to be
// bound to a Callback. We guard this explicitly at the call of Passed()
// to make for clear errors. Things not given to Passed() will be forwarded
// and stored by value which will not work for general move-only types.
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
// scoper to a Callback and allow the Callback to execute once.
template <typename T>
class PassedWrapper {
public:
explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper&& other)
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
T Take() const {
CHECK(is_valid_);
is_valid_ = false;
return std::move(scoper_);
}
private:
mutable bool is_valid_ = true;
mutable T scoper_;
};
template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
template <typename T>
decltype(auto) Unwrap(T&& o) {
return Unwrapper<T>::Unwrap(std::forward<T>(o));
}
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
// method. It is used internally by Bind() to select the correct
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
// the target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
struct IsWeakMethod : std::false_type {};
template <typename T, typename... Args>
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};
// Used for DropTypeListItem implementation.
template <size_t n, typename List>
struct DropTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List>
struct DropTypeListItemImpl<n, TypeList<T, List...>>
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
template <typename T, typename... List>
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
using Type = TypeList<T, List...>;
};
template <>
struct DropTypeListItemImpl<0, TypeList<>> {
using Type = TypeList<>;
};
// A type-level function that drops |n| list item from given TypeList.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
// Used for TakeTypeListItem implementation.
template <size_t n, typename List, typename... Accum>
struct TakeTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
template <typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
using Type = TypeList<Accum...>;
};
template <typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
using Type = TypeList<Accum...>;
};
// A type-level function that takes first |n| list item from given TypeList.
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
// TypeList<A, B, C>.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
// Used for ConcatTypeLists implementation.
template <typename List1, typename List2>
struct ConcatTypeListsImpl;
template <typename... Types1, typename... Types2>
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
using Type = TypeList<Types1..., Types2...>;
};
// A type-level function that concats two TypeLists.
template <typename List1, typename List2>
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
// Used for MakeFunctionType implementation.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;
template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
// MSVC 2013 doesn't support Type Alias of function types.
// Revisit this after we update it to newer version.
typedef R Type(Args...);
};
// A type-level function that constructs a function type that has |R| as its
// return type and has TypeLists items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
// Used for ExtractArgs and ExtractReturnType.
template <typename Signature>
struct ExtractArgsImpl;
template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
using ReturnType = R;
using ArgsList = TypeList<Args...>;
};
// A type-level function that extracts function arguments into a TypeList.
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
// A type-level function that extracts the return type of a function.
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
template <typename Callable,
typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable,
R (Callable::*)(Args...) const noexcept> {
using Type = R(Args...);
};
// Evaluated to RunType of the given callable type.
// Example:
// auto f = [](int, char*) { return 0.1; };
// ExtractCallableRunType<decltype(f)>
// is evaluated to
// double(int, char*);
template <typename Callable>
using ExtractCallableRunType =
typename ExtractCallableRunTypeImpl<Callable>::Type;
// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
// Otherwise, it's std::false_type.
// Example:
// IsCallableObject<void(*)()>::value is false.
//
// struct Foo {};
// IsCallableObject<void(Foo::*)()>::value is false.
//
// int i = 0;
// auto f = [i] {};
// IsCallableObject<decltype(f)>::value is false.
template <typename Functor, typename SFINAE = void>
struct IsCallableObject : std::false_type {};
template <typename Callable>
struct IsCallableObject<Callable, std::void_t<decltype(&Callable::operator())>>
: std::true_type {};
// HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a
// raw pointer to a RefCounted type.
template <typename... Ts>
struct HasRefCountedTypeAsRawPtr
: std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {};
// ForceVoidReturn<>
//
// Set of templates that support forcing the function return type to void.
template <typename Sig>
struct ForceVoidReturn;
template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
using RunType = void(Args...);
};
// FunctorTraits<>
//
// See description at top of file.
template <typename Functor, typename SFINAE>
struct FunctorTraits;
// For callable types.
// This specialization handles lambdas (captureless and capturing) and functors
// with a call operator. Capturing lambdas and stateful functors are explicitly
// disallowed by BindImpl().
//
// Example:
//
// // Captureless lambdas are allowed.
// [] { return 42; };
//
// // Capturing lambdas are *not* allowed.
// int x;
// [x] { return x; };
//
// // Any empty class with operator() is allowed.
// struct Foo {
// void operator()() const {}
// // No non-static member variable and no virtual functions.
// };
template <typename Functor>
struct FunctorTraits<Functor,
std::enable_if_t<IsCallableObject<Functor>::value>> {
using RunType = ExtractCallableRunType<Functor>;
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<Functor>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Function, typename... RunArgs>
static R Invoke(Function&& function, RunArgs&&... args) {
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
}
};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__stdcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename... RunArgs>
static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__fastcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename... RunArgs>
static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#if __OBJC__
// Support for Objective-C blocks. Blocks can be bound as the compiler will
// ensure their lifetimes will be correctly managed.
#if HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
struct FunctorTraits<R (^)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// According to LLVM documentation (§ 6.3), "local variables of automatic
// storage duration do not have precise lifetime." Use objc_precise_lifetime
// to ensure that the Objective-C block is not deallocated until it has
// finished executing even if the Callback<> is destroyed during the block
// execution.
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
return scoped_block(std::forward<RunArgs>(args)...);
}
};
#endif // HAS_FEATURE(objc_arc)
#endif // __OBJC__
// For methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...)> {
using RunType = R(Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
// For const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const> {
using RunType = R(const Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// For __stdcall methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...)>
: public FunctorTraits<R (Receiver::*)(Args...)> {};
// For __stdcall const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const>
: public FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#ifdef __cpp_noexcept_function_type
// noexcept makes a distinct function type in C++17.
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
// different in C++17.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
: FunctorTraits<R (Receiver::*)(Args...)> {};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
: FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif
// For IgnoreResults.
template <typename T>
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
using RunType =
typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;
template <typename IgnoreResultType, typename... RunArgs>
static void Invoke(IgnoreResultType&& ignore_result_helper,
RunArgs&&... args) {
FunctorTraits<T>::Invoke(
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
std::forward<RunArgs>(args)...);
}
};
// For OnceCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<OnceCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// For RepeatingCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
template <typename Functor>
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;
// StorageTraits<>
//
// See description at top of file.
template <typename T>
struct StorageTraits {
using Type = T;
};
// For T*, store as UnretainedWrapper<T> for safety, as it internally uses
// raw_ptr<T> (when possible).
template <typename T>
struct StorageTraits<T*> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
};
// For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem
// contradictory, but this ensures guaranteed protection for the pointer even
// during execution of callbacks with parameters of type raw_ptr<T>.
template <typename T, RawPtrTraits PtrTraits>
struct StorageTraits<raw_ptr<T, PtrTraits>> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
};
// Unwrap std::reference_wrapper and store it in a custom wrapper so that
// references are also protected with raw_ptr<T>.
template <typename T>
struct StorageTraits<std::reference_wrapper<T>> {
using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
};
template <typename T>
using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type;
// InvokeHelper<>
//
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
//
// The normal type just calls the underlying runnable.
//
// WeakCalls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call, typename ReturnType, size_t... indices>
struct InvokeHelper;
template <typename ReturnType, size_t... indices>
struct InvokeHelper<false, ReturnType, indices...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline ReturnType MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
using Traits = MakeFunctorTraits<Functor>;
return Traits::Invoke(
std::forward<Functor>(functor),
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
template <typename ReturnType, size_t index_target, size_t... index_tail>
struct InvokeHelper<true, ReturnType, index_target, index_tail...> {
// WeakCalls are only supported for functions with a void return type.
// Otherwise, the function result would be undefined if the WeakPtr<>
// is invalidated.
static_assert(std::is_void_v<ReturnType>,
"weak_ptrs can only bind to methods without return values");
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline void MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
static_assert(index_target == 0);
// Note the validity of the weak pointer should be tested _after_ it is
// unwrapped, otherwise it creates a race for weak pointer implementations
// that allow cross-thread usage and perform `Lock()` in Unwrap() traits.
const auto& target = Unwrap(std::get<0>(bound));
if (!target) {
return;
}
using Traits = MakeFunctorTraits<Functor>;
Traits::Invoke(
std::forward<Functor>(functor), target,
Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
// Invoker<>
//
// See description at the top of the file.
template <typename StorageType, typename UnboundRunType>
struct Invoker;
template <typename StorageType, typename R, typename... UnboundArgs>
struct Invoker<StorageType, R(UnboundArgs...)> {
static R RunOnce(BindStateBase* base,
PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return RunImpl(std::move(storage->functor_),
std::move(storage->bound_args_),
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
const StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return RunImpl(storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
private:
template <typename Functor, typename BoundArgsTuple, size_t... indices>
static inline R RunImpl(Functor&& functor,
BoundArgsTuple&& bound,
std::index_sequence<indices...> seq,
UnboundArgs&&... unbound_args) {
static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
#if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
raw_ptr_asan_bound_arg_tracker.AddArgs(
std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
std::forward<UnboundArgs>(unbound_args)...);
#endif // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
static constexpr bool is_weak_call =
IsWeakMethod<is_method,
std::tuple_element_t<indices, DecayedArgsTuple>...>();
// Do not `Unwrap()` here, as that immediately triggers dangling pointer
// detection. Dangling pointer detection should only be triggered if the
// callback is not cancelled, but cancellation status is not determined
// until later inside the InvokeHelper::MakeItSo specialization for weak
// calls.
//
// Dangling pointers when invoking a cancelled callback are not considered
// a memory safety error because protecting raw pointers usage with weak
// receivers (where the weak receiver usually own the pointed objects) is a
// common and broadly used pattern in the codebase.
return InvokeHelper<is_weak_call, R, indices...>::MakeItSo(
std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
std::forward<UnboundArgs>(unbound_args)...);
}
};
// Extracts necessary type info from Functor and BoundArgs.
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
template <typename Functor, typename... BoundArgs>
struct BindTypeHelper {
static constexpr size_t num_bounds = sizeof...(BoundArgs);
using FunctorTraits = MakeFunctorTraits<Functor>;
// Example:
// When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
// is a template pack of `Foo*` and `int16_t`:
// - RunType is `double(Foo*, int, const std::string&)`,
// - ReturnType is `double`,
// - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
// - BoundParamsList is `TypeList<Foo*, int>`,
// - UnboundParamsList is `TypeList<const std::string&>`,
// - BoundArgsList is `TypeList<Foo*, int16_t>`,
// - UnboundRunType is `double(const std::string&)`.
using RunType = typename FunctorTraits::RunType;
using ReturnType = ExtractReturnType<RunType>;
using RunParamsList = ExtractArgs<RunType>;
using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;
using BoundArgsList = TypeList<BoundArgs...>;
using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
};
template <typename Functor>
std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull(
const Functor& functor) {
return !functor;
}
template <typename Functor>
std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull(
const Functor&) {
return false;
}
// Used by QueryCancellationTraits below.
template <typename Functor, typename BoundArgsTuple, size_t... indices>
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
const Functor& functor,
const BoundArgsTuple& bound_args,
std::index_sequence<indices...>) {
switch (mode) {
case BindStateBase::IS_CANCELLED:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
functor, std::get<indices>(bound_args)...);
case BindStateBase::MAYBE_VALID:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
functor, std::get<indices>(bound_args)...);
}
NOTREACHED();
return false;
}
// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
// true if the callback |base| represents is canceled.
template <typename BindStateType>
bool QueryCancellationTraits(const BindStateBase* base,
BindStateBase::CancellationQueryMode mode) {
const BindStateType* storage = static_cast<const BindStateType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return QueryCancellationTraitsImpl(
mode, storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>());
}
// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
!(MakeFunctorTraits<Functor>::is_method &&
IsPointerV<std::decay_t<Receiver>> &&
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value)>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {}
template <typename Functor>
void BanUnconstructedRefCountedReceiver() {}
// Asserts that Callback is not the first owner of a ref-counted receiver.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
MakeFunctorTraits<Functor>::is_method &&
IsPointerV<std::decay_t<Receiver>> &&
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {
DCHECK(receiver);
// It's error prone to make the implicit first reference to ref-counted types.
// In the example below, base::BindOnce() would make the implicit first
// reference to the ref-counted Foo. If PostTask() failed or the posted task
// ran fast enough, the newly created instance could be destroyed before `oo`
// makes another reference.
// Foo::Foo() {
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
// }
//
// scoped_refptr<Foo> oo = new Foo();
//
// Hence, base::Bind{Once,Repeating}() refuses to create the first reference
// to ref-counted objects, and DCHECK()s otherwise. As above, that typically
// happens around PostTask() in their constructor, and such objects can be
// destroyed before `new` returns if the task resolves fast enough.
//
// Instead of doing the above, please consider adding a static constructor,
// and keep the first reference alive explicitly.
// // static
// scoped_refptr<Foo> Foo::Create() {
// auto foo = base::WrapRefCounted(new Foo());
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
// return foo;
// }
//
// Foo::Foo() {}
//
// scoped_refptr<Foo> oo = Foo::Create();
DCHECK(receiver->HasAtLeastOneRef());
}
// BindState<>
//
// This stores all the state passed into Bind().
template <typename Functor, typename... BoundArgs>
struct BindState final : BindStateBase {
using IsCancellable = std::bool_constant<
CallbackCancellationTraits<Functor,
std::tuple<BoundArgs...>>::is_cancellable>;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args) {
// Ban ref counted receivers that were not yet fully constructed to avoid
// a common pattern of racy situation.
BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);
// IsCancellable is std::false_type if
// CallbackCancellationTraits<>::IsCancelled returns always false.
// Otherwise, it's std::true_type.
return new BindState(IsCancellable{}, invoke_func,
std::forward<ForwardFunctor>(functor),
std::forward<ForwardBoundArgs>(bound_args)...);
}
Functor functor_;
std::tuple<BoundArgs...> bound_args_;
private:
static constexpr bool is_nested_callback =
MakeFunctorTraits<Functor>::is_callback;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::true_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func,
&Destroy,
&QueryCancellationTraits<BindState>),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
// We check the validity of nested callbacks (e.g., Bind(callback, ...)) in
// release builds to avoid null pointers from ending up in posted tasks,
// causing hard-to-diagnose crashes. Ideally we'd do this for all functors
// here, but that would have a large binary size impact.
if (is_nested_callback) {
CHECK(!IsNull(functor_));
} else {
DCHECK(!IsNull(functor_));
}
}
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::false_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
// See above for CHECK/DCHECK rationale.
if (is_nested_callback) {
CHECK(!IsNull(functor_));
} else {
DCHECK(!IsNull(functor_));
}
}
~BindState() = default;
static void Destroy(const BindStateBase* self) {
delete static_cast<const BindState*>(self);
}
};
// Used to implement MakeBindStateType.
template <bool is_method, typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl;
template <typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
"A parameter is a refcounted type and needs scoped_refptr.");
using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>;
};
template <typename Functor>
struct MakeBindStateTypeImpl<true, Functor> {
using Type = BindState<std::decay_t<Functor>>;
};
template <typename Functor, typename Receiver, typename... BoundArgs>
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
private:
using DecayedReceiver = std::decay_t<Receiver>;
static_assert(!std::is_array_v<std::remove_reference_t<Receiver>>,
"First bound argument to a method cannot be an array.");
static_assert(
!IsRawRefV<DecayedReceiver>,
"Receivers may not be raw_ref<T>. If using a raw_ref<T> here is safe"
" and has no lifetime concerns, use base::Unretained() and document why"
" it's safe.");
static_assert(
!IsPointerV<DecayedReceiver> ||
IsRefCountedType<RemovePointerT<DecayedReceiver>>::value,
"Receivers may not be raw pointers. If using a raw pointer here is safe"
" and has no lifetime concerns, use base::Unretained() and document why"
" it's safe.");
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
"A parameter is a refcounted type and needs scoped_refptr.");
using ReceiverStorageType =
typename MethodReceiverStorageType<DecayedReceiver>::Type;
public:
using Type = BindState<std::decay_t<Functor>,
ReceiverStorageType,
MakeStorageType<BoundArgs>...>;
};
template <typename Functor, typename... BoundArgs>
using MakeBindStateType =
typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
Functor,
BoundArgs...>::Type;
// Returns a RunType of bound functor.
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
template <typename Functor, typename... BoundArgs>
using MakeUnboundRunType =
typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;
// The implementation of TransformToUnwrappedType below.
template <bool is_once, typename T>
struct TransformToUnwrappedTypeImpl;
template <typename T>
struct TransformToUnwrappedTypeImpl<true, T> {
using StoredType = std::decay_t<T>;
using ForwardType = StoredType&&;
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};
template <typename T>
struct TransformToUnwrappedTypeImpl<false, T> {
using StoredType = std::decay_t<T>;
using ForwardType = const StoredType&;
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};
// Transform |T| into `Unwrapped` type, which is passed to the target function.
// Example:
// In is_once == true case,
// `int&&` -> `int&&`,
// `const int&` -> `int&&`,
// `OwnedWrapper<int>&` -> `int*&&`.
// In is_once == false case,
// `int&&` -> `const int&`,
// `const int&` -> `const int&`,
// `OwnedWrapper<int>&` -> `int* const &`.
template <bool is_once, typename T>
using TransformToUnwrappedType =
typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped;
// Transforms |Args| into `Unwrapped` types, and packs them into a TypeList.
// If |is_method| is true, tries to dereference the first argument to support
// smart pointers.
template <bool is_once, bool is_method, typename... Args>
struct MakeUnwrappedTypeListImpl {
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
};
// Performs special handling for this pointers.
// Example:
// int* -> int*,
// std::unique_ptr<int> -> int*.
template <bool is_once, typename Receiver, typename... Args>
struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> {
using ReceiverStorageType =
typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type;
using UnwrappedReceiver =
TransformToUnwrappedType<is_once, ReceiverStorageType>;
using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()),
TransformToUnwrappedType<is_once, Args>...>;
};
template <bool is_once, bool is_method, typename... Args>
using MakeUnwrappedTypeList =
typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type;
// IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback.
template <typename T>
struct IsOnceCallback : std::false_type {};
template <typename Signature>
struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {};
// IsUnretainedMayDangle is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>.
// Note that it is false for unretained_traits::MayDangleUntriaged.
template <typename StorageType>
inline constexpr bool IsUnretainedMayDangle = false;
template <typename T, RawPtrTraits PtrTraits>
inline constexpr bool IsUnretainedMayDangle<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;
// UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and
// FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's
// ::GetPtrType is the same type as the latter.
template <typename StorageType, typename FunctionParamType>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
template <typename T,
RawPtrTraits PtrTraitsInUnretained,
RawPtrTraits PtrTraitsInReceiver>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
raw_ptr<T, PtrTraitsInReceiver>> =
std::is_same_v<
typename UnretainedWrapper<T,
unretained_traits::MayDangle,
PtrTraitsInUnretained>::GetPtrType,
raw_ptr<T, PtrTraitsInReceiver>>;
// Helpers to make error messages slightly more readable.
template <int i>
struct BindArgument {
template <typename ForwardingType>
struct ForwardedAs {
template <typename FunctorParamType>
struct ToParamWithType {
static constexpr bool kNotARawPtr = !IsRawPtrV<FunctorParamType>;
static constexpr bool kCanBeForwardedToBoundFunctor =
std::is_convertible_v<ForwardingType, FunctorParamType>;
// If the bound type can't be forwarded then test if `FunctorParamType` is
// a non-const lvalue reference and a reference to the unwrapped type
// *could* have been successfully forwarded.
static constexpr bool kNonConstRefParamMustBeWrapped =
kCanBeForwardedToBoundFunctor ||
!(std::is_lvalue_reference_v<FunctorParamType> &&
!std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
std::is_convertible_v<std::decay_t<ForwardingType>&,
FunctorParamType>);
// Note that this intentionally drops the const qualifier from
// `ForwardingType`, to test if it *could* have been successfully
// forwarded if `Passed()` had been used.
static constexpr bool kMoveOnlyTypeMustUseBasePassed =
kCanBeForwardedToBoundFunctor ||
!std::is_convertible_v<std::decay_t<ForwardingType>&&,
FunctorParamType>;
};
};
template <typename BoundAsType>
struct BoundAs {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBindArgumentCanBeCaptured =
std::is_constructible_v<StorageType, BoundAsType>;
// Note that this intentionally drops the const qualifier from
// `BoundAsType`, to test if it *could* have been successfully bound if
// `std::move()` had been used.
static constexpr bool kMoveOnlyTypeMustUseStdMove =
kBindArgumentCanBeCaptured ||
!std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>;
};
};
template <typename FunctionParamType>
struct ToParamWithType {
template <typename StorageType>
struct StoredAs {
template <bool is_method>
// true if we are handling `this` parameter.
static constexpr bool kParamIsThisPointer = is_method && i == 0;
// true if the current parameter is of type `raw_ptr<T>` with
// `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`).
static constexpr bool kParamIsDanglingRawPtr =
IsRawPtrMayDangleV<FunctionParamType>;
// true if the bound parameter is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`.
static constexpr bool kBoundPtrMayDangle =
IsUnretainedMayDangle<StorageType>;
// true if bound parameter of type `UnretainedWrapper` and parameter of
// type `raw_ptr` have compatible `RawPtrTraits`.
static constexpr bool kMayBeDanglingTraitsCorrectness =
UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
FunctionParamType>;
// true if the receiver argument **must** be of type `MayBeDangling<T>`.
static constexpr bool kMayBeDanglingMustBeUsed =
kBoundPtrMayDangle && kParamIsDanglingRawPtr;
// true iff:
// - bound parameter is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`
// - the receiving argument is of type `MayBeDangling<T>`
template <bool is_method>
static constexpr bool kMayBeDanglingPtrPassedCorrectly =
kParamIsThisPointer<is_method> ||
kBoundPtrMayDangle == kParamIsDanglingRawPtr;
// true if:
// - MayBeDangling<T> must not be used as receiver parameter.
// OR
// - MayBeDangling<T> must be used as receiver parameter and its traits
// are matching Unretained traits.
static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits =
!kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness;
};
};
};
// Helper to assert that parameter |i| of type |Arg| can be bound, which means:
// - |Arg| can be retained internally as |Storage|.
// - |Arg| can be forwarded as |Unwrapped| to |Param|.
template <int i,
bool is_method,
typename Arg,
typename Storage,
typename Unwrapped,
typename Param>
struct AssertConstructible {
private:
// We forbid callbacks to use raw_ptr as a parameter. However, we allow
// MayBeDangling<T> iff the callback argument was created using
// `base::UnsafeDangling`.
static_assert(
BindArgument<i>::template ForwardedAs<
Unwrapped>::template ToParamWithType<Param>::kNotARawPtr ||
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
Storage>::kMayBeDanglingMustBeUsed,
"base::Bind() target functor has a parameter of type raw_ptr<T>. "
"raw_ptr<T> should not be used for function parameters, please use T* or "
"T& instead.");
// A bound functor must take a dangling pointer argument (e.g. bound using the
// UnsafeDangling helper) as a MayBeDangling<T>, to make it clear that the
// pointee's lifetime must be externally validated before using it. For
// methods, exempt a bound receiver (i.e. the this pointer) as it is not
// passed as a regular function argument.
static_assert(
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
Storage>::template kMayBeDanglingPtrPassedCorrectly<is_method>,
"base::UnsafeDangling() pointers must be received by functors with "
"MayBeDangling<T> as parameter.");
static_assert(
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
Storage>::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits,
"MayBeDangling<T> parameter must receive the same RawPtrTraits as the "
"one passed to the corresponding base::UnsafeDangling() call.");
// With `BindRepeating`, there are two decision points for how to handle a
// move-only type:
//
// 1. Whether the move-only argument should be moved into the internal
// `BindState`. Either `std::move()` or `Passed` is sufficient to trigger
// move-only semantics.
// 2. Whether or not the bound, move-only argument should be moved to the
// bound functor when invoked. When the argument is bound with `Passed`,
// invoking the callback will destructively move the bound, move-only
// argument to the bound functor. In contrast, if the argument is bound
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
// functor with a constant reference to the bound, move-only argument. This
// will fail if the bound functor accepts that argument by value, since the
// argument cannot be copied. It is this latter case that this
// static_assert aims to catch.
//
// In contrast, `BindOnce()` only has one decision point. Once a move-only
// type is captured by value into the internal `BindState`, the bound,
// move-only argument will always be moved to the functor when invoked.
// Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove`
// assert below instead.
//
// Note: `Passed()` is a legacy of supporting move-only types when repeating
// callbacks were the only callback type. A `RepeatingCallback` with a
// `Passed()` argument is really a `OnceCallback` and should eventually be
// migrated.
static_assert(
BindArgument<i>::template ForwardedAs<Unwrapped>::
template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed,
"base::BindRepeating() argument is a move-only type. Use base::Passed() "
"instead of std::move() to transfer ownership from the callback to the "
"bound functor.");
static_assert(
BindArgument<i>::template ForwardedAs<Unwrapped>::
template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped,
"Bound argument for non-const reference parameter must be wrapped in "
"std::ref() or base::OwnedRef().");
static_assert(
BindArgument<i>::template ForwardedAs<Unwrapped>::
template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor,
"Type mismatch between bound argument and bound functor's parameter.");
static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs<
Storage>::kMoveOnlyTypeMustUseStdMove,
"Attempting to bind a move-only type. Use std::move() to "
"transfer ownership to the created callback.");
// In practice, this static_assert should be quite rare as the storage type
// is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`.
static_assert(
BindArgument<i>::template BoundAs<Arg>::template StoredAs<
Storage>::kBindArgumentCanBeCaptured,
"Cannot capture argument: is the argument copyable or movable?");
};
// Takes three same-length TypeLists, and applies AssertConstructible for each
// triples.
template <bool is_method,
typename Index,
typename Args,
typename UnwrappedTypeList,
typename ParamsList>
struct AssertBindArgsValidity;
template <bool is_method,
size_t... Ns,
typename... Args,
typename... Unwrapped,
typename... Params>
struct AssertBindArgsValidity<is_method,
std::index_sequence<Ns...>,
TypeList<Args...>,
TypeList<Unwrapped...>,
TypeList<Params...>>
: AssertConstructible<Ns,
is_method,
Args,
std::decay_t<Args>,
Unwrapped,
Params>... {
static constexpr bool ok = true;
};
template <typename T>
struct AssertBindArgIsNotBasePassed : public std::true_type {};
template <typename T>
struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type {
};
template <template <typename> class CallbackT,
typename Functor,
typename... Args>
decltype(auto) BindImpl(Functor&& functor, Args&&... args) {
// This block checks if each |args| matches to the corresponding params of the
// target function. This check does not affect the behavior of Bind, but its
// error message should be more readable.
static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value;
using Helper = BindTypeHelper<Functor, Args...>;
using FunctorTraits = typename Helper::FunctorTraits;
using BoundArgsList = typename Helper::BoundArgsList;
using UnwrappedArgsList =
MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>;
using BoundParamsList = typename Helper::BoundParamsList;
static_assert(
MakeFunctorTraits<Functor>::is_stateless,
"Capturing lambdas and stateful lambdas are intentionally not supported. "
"Please use base::Bind{Once,Repeating} directly to bind arguments.");
static_assert(
AssertBindArgsValidity<FunctorTraits::is_method,
std::make_index_sequence<Helper::num_bounds>,
BoundArgsList, UnwrappedArgsList,
BoundParamsList>::ok,
"The bound args need to be convertible to the target params.");
using BindState = MakeBindStateType<Functor, Args...>;
using UnboundRunType = MakeUnboundRunType<Functor, Args...>;
using Invoker = Invoker<BindState, UnboundRunType>;
using CallbackType = CallbackT<UnboundRunType>;
// Store the invoke func into PolymorphicInvoke before casting it to
// InvokeFuncStorage, so that we can ensure its type matches to
// PolymorphicInvoke, to which CallbackType will cast back.
using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke;
PolymorphicInvoke invoke_func;
if constexpr (kIsOnce) {
invoke_func = Invoker::RunOnce;
} else {
invoke_func = Invoker::Run;
}
using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
return CallbackType(BindState::Create(
reinterpret_cast<InvokeFuncStorage>(invoke_func),
std::forward<Functor>(functor), std::forward<Args>(args)...));
}
// Special cases for binding to a base::{Once, Repeating}Callback without extra
// bound arguments. We CHECK() the validity of callback to guard against null
// pointers accidentally ending up in posted tasks, causing hard-to-debug
// crashes.
template <template <typename> class CallbackT,
typename Signature,
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
OnceCallback<Signature>>>* = nullptr>
OnceCallback<Signature> BindImpl(OnceCallback<Signature> callback) {
CHECK(callback);
return callback;
}
template <template <typename> class CallbackT,
typename Signature,
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
OnceCallback<Signature>>>* = nullptr>
OnceCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
CHECK(callback);
return callback;
}
template <template <typename> class CallbackT,
typename Signature,
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
RepeatingCallback<Signature>>>* =
nullptr>
RepeatingCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
CHECK(callback);
return callback;
}
template <template <typename> class CallbackT, typename Signature>
auto BindImpl(absl::FunctionRef<Signature>, ...) {
static_assert(
AlwaysFalse<Signature>,
"base::Bind{Once,Repeating} require strong ownership: non-owning "
"function references may not bound as the functor due to potential "
"lifetime issues.");
return nullptr;
}
template <template <typename> class CallbackT, typename Signature>
auto BindImpl(FunctionRef<Signature>, ...) {
static_assert(
AlwaysFalse<Signature>,
"base::Bind{Once,Repeating} require strong ownership: non-owning "
"function references may not bound as the functor due to potential "
"lifetime issues.");
return nullptr;
}
} // namespace internal
// An injection point to control |this| pointer behavior on a method invocation.
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
// method, base::Bind cancels the method invocation if the receiver is tested as
// false.
// E.g. Foo::bar() is not called:
// struct Foo : base::SupportsWeakPtr<Foo> {
// void bar() {}
// };
//
// WeakPtr<Foo> oo = nullptr;
// base::BindOnce(&Foo::bar, oo).Run();
template <typename T>
struct IsWeakReceiver : std::false_type {};
template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
template <typename T>
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
// An injection point to control how objects are checked for maybe validity,
// which is an optimistic thread-safe check for full validity.
template <typename>
struct MaybeValidTraits {
template <typename T>
static bool MaybeValid(const T& o) {
return o.MaybeValid();
}
};
// An injection point to control how bound objects passed to the target
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
// before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
template <typename T>
static T&& Unwrap(T&& o) {
return std::forward<T>(o);
}
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> {
static auto Unwrap(
const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) {
return o.get();
}
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
static T& Unwrap(
const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) {
return o.get();
}
};
template <typename T>
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
};
template <typename T, typename Deleter>
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
return o.get();
}
};
template <typename T>
struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> {
static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};
#if BUILDFLAG(IS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif
// CallbackCancellationTraits allows customization of Callback's cancellation
// semantics. By default, callbacks are not cancellable. A specialization should
// set is_cancellable = true and implement an IsCancelled() that returns if the
// callback should be cancelled.
template <typename Functor, typename BoundArgsTuple, typename SFINAE>
struct CallbackCancellationTraits {
static constexpr bool is_cancellable = false;
};
// Specialization for method bound to weak pointer receiver.
template <typename Functor, typename... BoundArgs>
struct CallbackCancellationTraits<
Functor,
std::tuple<BoundArgs...>,
std::enable_if_t<
internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
BoundArgs...>::value>> {
static constexpr bool is_cancellable = true;
template <typename Receiver, typename... Args>
static bool IsCancelled(const Functor&,
const Receiver& receiver,
const Args&...) {
return !receiver;
}
template <typename Receiver, typename... Args>
static bool MaybeValid(const Functor&,
const Receiver& receiver,
const Args&...) {
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
}
};
// Specialization for a nested bind.
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<OnceCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
} // namespace base
#endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_
|