File: bind_internal.h

package info (click to toggle)
chromium 120.0.6099.224-1~deb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,112,112 kB
  • sloc: cpp: 32,907,025; ansic: 8,148,123; javascript: 3,679,536; python: 2,031,248; asm: 959,718; java: 804,675; xml: 617,256; sh: 111,417; objc: 100,835; perl: 88,443; cs: 53,032; makefile: 29,579; fortran: 24,137; php: 21,162; tcl: 21,147; sql: 20,809; ruby: 17,735; pascal: 12,864; yacc: 8,045; lisp: 3,388; lex: 1,323; ada: 727; awk: 329; jsp: 267; csh: 117; exp: 43; sed: 37
file content (1800 lines) | stat: -rw-r--r-- 70,794 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_

#include <stddef.h>

#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>

#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_buildflags.h"
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_config.h"
#include "base/allocator/partition_allocator/src/partition_alloc/pointers/raw_ptr.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/callback_internal.h"
#include "base/functional/disallow_unretained.h"
#include "base/functional/unretained_traits.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
#include "base/memory/raw_ref.h"
#include "base/memory/raw_scoped_refptr_mismatch_checker.h"
#include "base/memory/weak_ptr.h"
#include "base/notreached.h"
#include "base/types/always_false.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"

// See base/functional/callback.h for user documentation.
//
//
// CONCEPTS:
//  Functor -- A movable type representing something that should be called.
//             All function pointers and Callback<> are functors even if the
//             invocation syntax differs.
//  RunType -- A function type (as opposed to function _pointer_ type) for
//             a Callback<>::Run().  Usually just a convenience typedef.
//  (Bound)Args -- A set of types that stores the arguments.
//
// Types:
//  ForceVoidReturn<> -- Helper class for translating function signatures to
//                       equivalent forms with a "void" return type.
//  FunctorTraits<> -- Type traits used to determine the correct RunType and
//                     invocation manner for a Functor.  This is where function
//                     signature adapters are applied.
//  StorageTraits<> -- Type traits that determine how a bound argument is
//                     stored in BindState.
//  InvokeHelper<> -- Take a Functor + arguments and actually invokes it.
//                    Handle the differing syntaxes needed for WeakPtr<>
//                    support.  This is separate from Invoker to avoid creating
//                    multiple version of Invoker<>.
//  Invoker<> -- Unwraps the curried parameters and executes the Functor.
//  BindState<> -- Stores the curried parameters, and is the main entry point
//                 into the Bind() system.

#if BUILDFLAG(IS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
}  // namespace WRL
}  // namespace Microsoft
#endif

namespace base {

template <typename T>
struct IsWeakReceiver;

template <typename>
struct BindUnwrapTraits;

template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
struct CallbackCancellationTraits;

template <typename Signature>
class FunctionRef;

namespace unretained_traits {

// UnretainedWrapper will check and report if pointer is dangling upon
// invocation.
struct MayNotDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. For
// extra safety, the receiver must be of type MayBeDangling<>.
struct MayDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. The
// receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to
// allow dangling pointers that would otherwise crash if MayNotDangle was used.
// It should be replaced ASAP with MayNotDangle (after fixing the dangling
// pointers) or with MayDangle if there is really no other way (after making
// receivers MayBeDangling<>).
struct MayDangleUntriaged {};

}  // namespace unretained_traits

namespace internal {

template <typename Functor, typename SFINAE = void>
struct FunctorTraits;

template <typename T,
          typename UnretainedTrait,
          RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedWrapper {
  // Note that if PtrTraits already includes MayDangle, DanglingRawPtrType
  // will be identical to `raw_ptr<T, PtrTraits>`.
  using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;

 public:
  // We want the getter type to match the receiver parameter that it is passed
  // into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
  // match `StorageType`, but sometimes we can't have both, as shown in
  // https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
  // When we can't have both, prefer the former, mostly because
  // `GetPtrType`=`raw_ptr<T>` would break if e.g. UnretainedWrapper() is
  // constructed using `char*`, but the receiver is of type `std::string&`.
  // This is enforced by static_asserts in base::internal::AssertConstructible.
  using GetPtrType = std::conditional_t<
      raw_ptr_traits::IsSupportedType<T>::value &&
          std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>,
      DanglingRawPtrType,
      T*>;

  static_assert(TypeSupportsUnretainedV<T>,
                "Callback cannot capture an unprotected C++ pointer since this "
                "Type is annotated with DISALLOW_UNRETAINED(). Please see "
                "base/functional/disallow_unretained.h for alternatives.");

  // Raw pointer makes sense only if there are no PtrTraits. If there are,
  // it means that a `raw_ptr` is being passed, so use the ctors below instead.
  template <RawPtrTraits PTraits = PtrTraits,
            typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
  explicit UnretainedWrapper(T* o) : ptr_(o) {}

  // Trick to only instantiate these constructors if they are used. Otherwise,
  // instantiating UnretainedWrapper with a T that is not supported by
  // raw_ptr would trigger raw_ptr<T>'s static_assert.
  template <typename U = T>
  explicit UnretainedWrapper(const raw_ptr<U, PtrTraits>& o) : ptr_(o) {}
  template <typename U = T>
  explicit UnretainedWrapper(raw_ptr<U, PtrTraits>&& o) : ptr_(std::move(o)) {}

  GetPtrType get() const { return GetInternal(ptr_); }

 private:
  // `ptr_` is either a `raw_ptr` or a regular C++ pointer.
  template <typename U>
  static GetPtrType GetInternal(U* ptr) {
    static_assert(std::is_same_v<T, U>);
    return ptr;
  }
  template <typename U, RawPtrTraits Traits>
  static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
    static_assert(std::is_same_v<T, U>);
    if constexpr (std::is_same_v<UnretainedTrait,
                                 unretained_traits::MayNotDangle>) {
      ptr.ReportIfDangling();
    }
    return ptr;
  }

  // `Unretained()` arguments often dangle by design (a common design pattern
  // is to manage an object's lifetime inside the callback itself, using
  // stateful information), so disable direct dangling pointer detection
  // of `ptr_`.
  //
  // If the callback is invoked, dangling pointer detection will be triggered
  // before invoking the bound functor (unless stated otherwise, see
  // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
  // pointer value via `get()` above.
  using StorageType =
      std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
                         DanglingRawPtrType,
                         T*>;
  // Avoid converting between different `raw_ptr` types when calling `get()`.
  // It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
  // direction. See the comment by `GetPtrType` describing for more details.
  static_assert(std::is_pointer_v<GetPtrType> ||
                std::is_same_v<GetPtrType, StorageType>);
  StorageType ptr_;
};

// Storage type for std::reference_wrapper so `BindState` can internally store
// unprotected references using raw_ref.
//
// std::reference_wrapper<T> and T& do not work, since the reference lifetime is
// not safely protected by MiraclePtr.
//
// UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would
// try to pass by T* rather than T&.
template <typename T,
          typename UnretainedTrait,
          RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedRefWrapper {
 public:
  static_assert(
      TypeSupportsUnretainedV<T>,
      "Callback cannot capture an unprotected C++ reference since this "
      "type is annotated with DISALLOW_UNRETAINED(). Please see "
      "base/functional/disallow_unretained.h for alternatives.");

  // Raw reference makes sense only if there are no PtrTraits. If there are,
  // it means that a `raw_ref` is being passed, so use the ctors below instead.
  template <RawPtrTraits PTraits = PtrTraits,
            typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
  explicit UnretainedRefWrapper(T& o) : ref_(o) {}

  // Trick to only instantiate these constructors if they are used. Otherwise,
  // instantiating UnretainedWrapper with a T that is not supported by
  // raw_ref would trigger raw_ref<T>'s static_assert.
  template <typename U = T>
  explicit UnretainedRefWrapper(const raw_ref<U, PtrTraits>& o) : ref_(o) {}
  template <typename U = T>
  explicit UnretainedRefWrapper(raw_ref<U, PtrTraits>&& o)
      : ref_(std::move(o)) {}

  T& get() const { return GetInternal(ref_); }

 private:
  // `ref_` is either a `raw_ref` or a regular C++ reference.
  template <typename U>
  static T& GetInternal(U& ref) {
    static_assert(std::is_same_v<T, U>);
    return ref;
  }
  template <typename U, RawPtrTraits Traits>
  static T& GetInternal(const raw_ref<U, Traits>& ref) {
    static_assert(std::is_same_v<T, U>);
    // The ultimate goal is to crash when a callback is invoked with a
    // dangling pointer. This is checked here. For now, it is configured to
    // either crash, DumpWithoutCrashing or be ignored. This depends on the
    // PartitionAllocUnretainedDanglingPtr feature.
    if constexpr (std::is_same_v<UnretainedTrait,
                                 unretained_traits::MayNotDangle>) {
      ref.ReportIfDangling();
    }
    // We can't use operator* here, we need to use raw_ptr's GetForExtraction
    // instead of GetForDereference. If we did use GetForDereference then we'd
    // crash in ASAN builds on calling a bound callback with a dangling
    // reference parameter even if that parameter is not used. This could hide
    // a later unprotected issue that would be reached in release builds.
    return ref.get();
  }

  // `Unretained()` arguments often dangle by design (a common design pattern
  // is to manage an object's lifetime inside the callback itself, using
  // stateful information), so disable direct dangling pointer detection
  // of `ref_`.
  //
  // If the callback is invoked, dangling pointer detection will be triggered
  // before invoking the bound functor (unless stated otherwise, see
  // `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
  // pointer value via `get()` above.
  using StorageType =
      std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
                         raw_ref<T, DisableDanglingPtrDetection>,
                         T&>;

  StorageType ref_;
};

// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
// a method receiver (a reference on `this` argument). This is needed because
// the internal callback mechanism expects the receiver to have the type
// `MyClass*` and to have `operator*`.
// This is used as storage.
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
class UnretainedRefWrapperReceiver {
 public:
  // NOLINTNEXTLINE(google-explicit-constructor)
  UnretainedRefWrapperReceiver(
      UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& obj)
      : obj_(std::move(obj)) {}
  // NOLINTNEXTLINE(google-explicit-constructor)
  T& operator*() const { return obj_.get(); }

 private:
  UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
};

// MethodReceiverStorageType converts the current receiver type to its stored
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
// `UnretainedRefWrapper` to make it compliant with the internal callback
// invocation mechanism.
template <typename T>
struct MethodReceiverStorageType {
  using Type =
      std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>;
};

template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct MethodReceiverStorageType<
    UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
  // We can't use UnretainedRefWrapper as a receiver directly (see
  // UnretainedRefWrapperReceiver for why).
  using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
};

template <typename T>
class RetainedRefWrapper {
 public:
  explicit RetainedRefWrapper(T* o) : ptr_(o) {}
  explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
  T* get() const { return ptr_.get(); }

 private:
  scoped_refptr<T> ptr_;
};

template <typename T>
struct IgnoreResultHelper {
  explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
  explicit operator bool() const { return !!functor_; }

  T functor_;
};

template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
 public:
  explicit OwnedWrapper(T* o) : ptr_(o) {}
  explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
      : ptr_(std::move(ptr)) {}
  T* get() const { return ptr_.get(); }

 private:
  std::unique_ptr<T, Deleter> ptr_;
};

template <typename T>
class OwnedRefWrapper {
 public:
  explicit OwnedRefWrapper(const T& t) : t_(t) {}
  explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
  T& get() const { return t_; }

 private:
  mutable T t_;
};

// PassedWrapper is a copyable adapter for a scoper that ignores const.
//
// It is needed to get around the fact that Bind() takes a const reference to
// all its arguments.  Because Bind() takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into Bind() would violate
// the const correctness.
//
// This conundrum cannot be solved without either C++11 rvalue references or
// a O(2^n) blowup of Bind() templates to handle each combination of regular
// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
// that is copyable to transmit the correct type information down into
// BindState<>. Ignoring const in this type makes sense because it is only
// created when we are explicitly trying to do a destructive move.
//
// Two notes:
//  1) PassedWrapper supports any type that has a move constructor, however
//     the type will need to be specifically allowed in order for it to be
//     bound to a Callback. We guard this explicitly at the call of Passed()
//     to make for clear errors. Things not given to Passed() will be forwarded
//     and stored by value which will not work for general move-only types.
//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
//     scoper to a Callback and allow the Callback to execute once.
template <typename T>
class PassedWrapper {
 public:
  explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
  PassedWrapper(PassedWrapper&& other)
      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
  T Take() const {
    CHECK(is_valid_);
    is_valid_ = false;
    return std::move(scoper_);
  }

 private:
  mutable bool is_valid_ = true;
  mutable T scoper_;
};

template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;

template <typename T>
decltype(auto) Unwrap(T&& o) {
  return Unwrapper<T>::Unwrap(std::forward<T>(o));
}

// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
// method.  It is used internally by Bind() to select the correct
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
// the target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
struct IsWeakMethod : std::false_type {};

template <typename T, typename... Args>
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};

// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};

// Used for DropTypeListItem implementation.
template <size_t n, typename List>
struct DropTypeListItemImpl;

// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List>
struct DropTypeListItemImpl<n, TypeList<T, List...>>
    : DropTypeListItemImpl<n - 1, TypeList<List...>> {};

template <typename T, typename... List>
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
  using Type = TypeList<T, List...>;
};

template <>
struct DropTypeListItemImpl<0, TypeList<>> {
  using Type = TypeList<>;
};

// A type-level function that drops |n| list item from given TypeList.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;

// Used for TakeTypeListItem implementation.
template <size_t n, typename List, typename... Accum>
struct TakeTypeListItemImpl;

// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
    : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};

template <typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
  using Type = TypeList<Accum...>;
};

template <typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
  using Type = TypeList<Accum...>;
};

// A type-level function that takes first |n| list item from given TypeList.
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
// TypeList<A, B, C>.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;

// Used for ConcatTypeLists implementation.
template <typename List1, typename List2>
struct ConcatTypeListsImpl;

template <typename... Types1, typename... Types2>
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
  using Type = TypeList<Types1..., Types2...>;
};

// A type-level function that concats two TypeLists.
template <typename List1, typename List2>
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;

// Used for MakeFunctionType implementation.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;

template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
  // MSVC 2013 doesn't support Type Alias of function types.
  // Revisit this after we update it to newer version.
  typedef R Type(Args...);
};

// A type-level function that constructs a function type that has |R| as its
// return type and has TypeLists items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;

// Used for ExtractArgs and ExtractReturnType.
template <typename Signature>
struct ExtractArgsImpl;

template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
  using ReturnType = R;
  using ArgsList = TypeList<Args...>;
};

// A type-level function that extracts function arguments into a TypeList.
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;

// A type-level function that extracts the return type of a function.
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;

template <typename Callable,
          typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;

template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
  using Type = R(Args...);
};

template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
  using Type = R(Args...);
};

template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> {
  using Type = R(Args...);
};

template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable,
                                  R (Callable::*)(Args...) const noexcept> {
  using Type = R(Args...);
};

// Evaluated to RunType of the given callable type.
// Example:
//   auto f = [](int, char*) { return 0.1; };
//   ExtractCallableRunType<decltype(f)>
//   is evaluated to
//   double(int, char*);
template <typename Callable>
using ExtractCallableRunType =
    typename ExtractCallableRunTypeImpl<Callable>::Type;

// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
// Otherwise, it's std::false_type.
// Example:
//   IsCallableObject<void(*)()>::value is false.
//
//   struct Foo {};
//   IsCallableObject<void(Foo::*)()>::value is false.
//
//   int i = 0;
//   auto f = [i] {};
//   IsCallableObject<decltype(f)>::value is false.
template <typename Functor, typename SFINAE = void>
struct IsCallableObject : std::false_type {};

template <typename Callable>
struct IsCallableObject<Callable, std::void_t<decltype(&Callable::operator())>>
    : std::true_type {};

// HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a
// raw pointer to a RefCounted type.
template <typename... Ts>
struct HasRefCountedTypeAsRawPtr
    : std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {};

// ForceVoidReturn<>
//
// Set of templates that support forcing the function return type to void.
template <typename Sig>
struct ForceVoidReturn;

template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
  using RunType = void(Args...);
};

// FunctorTraits<>
//
// See description at top of file.
template <typename Functor, typename SFINAE>
struct FunctorTraits;

// For callable types.
// This specialization handles lambdas (captureless and capturing) and functors
// with a call operator. Capturing lambdas and stateful functors are explicitly
// disallowed by BindImpl().
//
// Example:
//
//   // Captureless lambdas are allowed.
//   [] { return 42; };
//
//   // Capturing lambdas are *not* allowed.
//   int x;
//   [x] { return x; };
//
//   // Any empty class with operator() is allowed.
//   struct Foo {
//     void operator()() const {}
//     // No non-static member variable and no virtual functions.
//   };
template <typename Functor>
struct FunctorTraits<Functor,
                     std::enable_if_t<IsCallableObject<Functor>::value>> {
  using RunType = ExtractCallableRunType<Functor>;
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = false;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = std::is_empty_v<Functor>;

  template <typename RunFunctor, typename... RunArgs>
  static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
                                           RunArgs&&... args) {
    return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
  }
};

// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...)> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename Function, typename... RunArgs>
  static R Invoke(Function&& function, RunArgs&&... args) {
    return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
  }
};

#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)

// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__stdcall*)(Args...)> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename... RunArgs>
  static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
    return function(std::forward<RunArgs>(args)...);
  }
};

// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__fastcall*)(Args...)> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename... RunArgs>
  static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
    return function(std::forward<RunArgs>(args)...);
  }
};

#endif  // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)

#if __OBJC__

// Support for Objective-C blocks. Blocks can be bound as the compiler will
// ensure their lifetimes will be correctly managed.

#if HAS_FEATURE(objc_arc)

template <typename R, typename... Args>
struct FunctorTraits<R (^)(Args...)> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename BlockType, typename... RunArgs>
  static R Invoke(BlockType&& block, RunArgs&&... args) {
    // According to LLVM documentation (§ 6.3), "local variables of automatic
    // storage duration do not have precise lifetime." Use objc_precise_lifetime
    // to ensure that the Objective-C block is not deallocated until it has
    // finished executing even if the Callback<> is destroyed during the block
    // execution.
    // https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
    __attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
    return scoped_block(std::forward<RunArgs>(args)...);
  }
};

#endif  // HAS_FEATURE(objc_arc)
#endif  // __OBJC__

// For methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...)> {
  using RunType = R(Receiver*, Args...);
  static constexpr bool is_method = true;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename Method, typename ReceiverPtr, typename... RunArgs>
  static R Invoke(Method method,
                  ReceiverPtr&& receiver_ptr,
                  RunArgs&&... args) {
    return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
  }
};

// For const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const> {
  using RunType = R(const Receiver*, Args...);
  static constexpr bool is_method = true;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = false;
  static constexpr bool is_stateless = true;

  template <typename Method, typename ReceiverPtr, typename... RunArgs>
  static R Invoke(Method method,
                  ReceiverPtr&& receiver_ptr,
                  RunArgs&&... args) {
    return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
  }
};

#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)

// For __stdcall methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...)>
    : public FunctorTraits<R (Receiver::*)(Args...)> {};

// For __stdcall const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const>
    : public FunctorTraits<R (Receiver::*)(Args...) const> {};

#endif  // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)

#ifdef __cpp_noexcept_function_type
// noexcept makes a distinct function type in C++17.
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
// different in C++17.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
};

template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
    : FunctorTraits<R (Receiver::*)(Args...)> {};

template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
    : FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif

// For IgnoreResults.
template <typename T>
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
  using RunType =
      typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;

  template <typename IgnoreResultType, typename... RunArgs>
  static void Invoke(IgnoreResultType&& ignore_result_helper,
                     RunArgs&&... args) {
    FunctorTraits<T>::Invoke(
        std::forward<IgnoreResultType>(ignore_result_helper).functor_,
        std::forward<RunArgs>(args)...);
  }
};

// For OnceCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<OnceCallback<R(Args...)>> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = true;
  static constexpr bool is_stateless = true;

  template <typename CallbackType, typename... RunArgs>
  static R Invoke(CallbackType&& callback, RunArgs&&... args) {
    DCHECK(!callback.is_null());
    return std::forward<CallbackType>(callback).Run(
        std::forward<RunArgs>(args)...);
  }
};

// For RepeatingCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
  using RunType = R(Args...);
  static constexpr bool is_method = false;
  static constexpr bool is_nullable = true;
  static constexpr bool is_callback = true;
  static constexpr bool is_stateless = true;

  template <typename CallbackType, typename... RunArgs>
  static R Invoke(CallbackType&& callback, RunArgs&&... args) {
    DCHECK(!callback.is_null());
    return std::forward<CallbackType>(callback).Run(
        std::forward<RunArgs>(args)...);
  }
};

template <typename Functor>
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;

// StorageTraits<>
//
// See description at top of file.
template <typename T>
struct StorageTraits {
  using Type = T;
};

// For T*, store as UnretainedWrapper<T> for safety, as it internally uses
// raw_ptr<T> (when possible).
template <typename T>
struct StorageTraits<T*> {
  using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
};

// For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem
// contradictory, but this ensures guaranteed protection for the pointer even
// during execution of callbacks with parameters of type raw_ptr<T>.
template <typename T, RawPtrTraits PtrTraits>
struct StorageTraits<raw_ptr<T, PtrTraits>> {
  using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
};

// Unwrap std::reference_wrapper and store it in a custom wrapper so that
// references are also protected with raw_ptr<T>.
template <typename T>
struct StorageTraits<std::reference_wrapper<T>> {
  using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
};

template <typename T>
using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type;

// InvokeHelper<>
//
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
//
// The normal type just calls the underlying runnable.
//
// WeakCalls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call, typename ReturnType, size_t... indices>
struct InvokeHelper;

template <typename ReturnType, size_t... indices>
struct InvokeHelper<false, ReturnType, indices...> {
  template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
  static inline ReturnType MakeItSo(Functor&& functor,
                                    BoundArgsTuple&& bound,
                                    RunArgs&&... args) {
    using Traits = MakeFunctorTraits<Functor>;
    return Traits::Invoke(
        std::forward<Functor>(functor),
        Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
        std::forward<RunArgs>(args)...);
  }
};

template <typename ReturnType, size_t index_target, size_t... index_tail>
struct InvokeHelper<true, ReturnType, index_target, index_tail...> {
  // WeakCalls are only supported for functions with a void return type.
  // Otherwise, the function result would be undefined if the WeakPtr<>
  // is invalidated.
  static_assert(std::is_void_v<ReturnType>,
                "weak_ptrs can only bind to methods without return values");

  template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
  static inline void MakeItSo(Functor&& functor,
                              BoundArgsTuple&& bound,
                              RunArgs&&... args) {
    static_assert(index_target == 0);
    // Note the validity of the weak pointer should be tested _after_ it is
    // unwrapped, otherwise it creates a race for weak pointer implementations
    // that allow cross-thread usage and perform `Lock()` in Unwrap() traits.
    const auto& target = Unwrap(std::get<0>(bound));
    if (!target) {
      return;
    }
    using Traits = MakeFunctorTraits<Functor>;
    Traits::Invoke(
        std::forward<Functor>(functor), target,
        Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
        std::forward<RunArgs>(args)...);
  }
};

// Invoker<>
//
// See description at the top of the file.
template <typename StorageType, typename UnboundRunType>
struct Invoker;

template <typename StorageType, typename R, typename... UnboundArgs>
struct Invoker<StorageType, R(UnboundArgs...)> {
  static R RunOnce(BindStateBase* base,
                   PassingType<UnboundArgs>... unbound_args) {
    // Local references to make debugger stepping easier. If in a debugger,
    // you really want to warp ahead and step through the
    // InvokeHelper<>::MakeItSo() call below.
    StorageType* storage = static_cast<StorageType*>(base);
    static constexpr size_t num_bound_args =
        std::tuple_size_v<decltype(storage->bound_args_)>;
    return RunImpl(std::move(storage->functor_),
                   std::move(storage->bound_args_),
                   std::make_index_sequence<num_bound_args>(),
                   std::forward<UnboundArgs>(unbound_args)...);
  }

  static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
    // Local references to make debugger stepping easier. If in a debugger,
    // you really want to warp ahead and step through the
    // InvokeHelper<>::MakeItSo() call below.
    const StorageType* storage = static_cast<StorageType*>(base);
    static constexpr size_t num_bound_args =
        std::tuple_size_v<decltype(storage->bound_args_)>;
    return RunImpl(storage->functor_, storage->bound_args_,
                   std::make_index_sequence<num_bound_args>(),
                   std::forward<UnboundArgs>(unbound_args)...);
  }

 private:
  template <typename Functor, typename BoundArgsTuple, size_t... indices>
  static inline R RunImpl(Functor&& functor,
                          BoundArgsTuple&& bound,
                          std::index_sequence<indices...> seq,
                          UnboundArgs&&... unbound_args) {
    static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;

    using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;

#if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
    RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
    raw_ptr_asan_bound_arg_tracker.AddArgs(
        std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
        std::forward<UnboundArgs>(unbound_args)...);
#endif  // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)

    static constexpr bool is_weak_call =
        IsWeakMethod<is_method,
                     std::tuple_element_t<indices, DecayedArgsTuple>...>();

    // Do not `Unwrap()` here, as that immediately triggers dangling pointer
    // detection. Dangling pointer detection should only be triggered if the
    // callback is not cancelled, but cancellation status is not determined
    // until later inside the InvokeHelper::MakeItSo specialization for weak
    // calls.
    //
    // Dangling pointers when invoking a cancelled callback are not considered
    // a memory safety error because protecting raw pointers usage with weak
    // receivers (where the weak receiver usually own the pointed objects) is a
    // common and broadly used pattern in the codebase.
    return InvokeHelper<is_weak_call, R, indices...>::MakeItSo(
        std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
        std::forward<UnboundArgs>(unbound_args)...);
  }
};

// Extracts necessary type info from Functor and BoundArgs.
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
template <typename Functor, typename... BoundArgs>
struct BindTypeHelper {
  static constexpr size_t num_bounds = sizeof...(BoundArgs);
  using FunctorTraits = MakeFunctorTraits<Functor>;

  // Example:
  //   When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
  //   is a template pack of `Foo*` and `int16_t`:
  //    - RunType is `double(Foo*, int, const std::string&)`,
  //    - ReturnType is `double`,
  //    - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
  //    - BoundParamsList is `TypeList<Foo*, int>`,
  //    - UnboundParamsList is `TypeList<const std::string&>`,
  //    - BoundArgsList is `TypeList<Foo*, int16_t>`,
  //    - UnboundRunType is `double(const std::string&)`.
  using RunType = typename FunctorTraits::RunType;
  using ReturnType = ExtractReturnType<RunType>;

  using RunParamsList = ExtractArgs<RunType>;
  using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
  using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;

  using BoundArgsList = TypeList<BoundArgs...>;

  using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
};

template <typename Functor>
std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull(
    const Functor& functor) {
  return !functor;
}

template <typename Functor>
std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull(
    const Functor&) {
  return false;
}

// Used by QueryCancellationTraits below.
template <typename Functor, typename BoundArgsTuple, size_t... indices>
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
                                 const Functor& functor,
                                 const BoundArgsTuple& bound_args,
                                 std::index_sequence<indices...>) {
  switch (mode) {
    case BindStateBase::IS_CANCELLED:
      return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
          functor, std::get<indices>(bound_args)...);
    case BindStateBase::MAYBE_VALID:
      return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
          functor, std::get<indices>(bound_args)...);
  }
  NOTREACHED();
  return false;
}

// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
// true if the callback |base| represents is canceled.
template <typename BindStateType>
bool QueryCancellationTraits(const BindStateBase* base,
                             BindStateBase::CancellationQueryMode mode) {
  const BindStateType* storage = static_cast<const BindStateType*>(base);
  static constexpr size_t num_bound_args =
      std::tuple_size_v<decltype(storage->bound_args_)>;
  return QueryCancellationTraitsImpl(
      mode, storage->functor_, storage->bound_args_,
      std::make_index_sequence<num_bound_args>());
}

// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
    !(MakeFunctorTraits<Functor>::is_method &&
      IsPointerV<std::decay_t<Receiver>> &&
      IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value)>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {}

template <typename Functor>
void BanUnconstructedRefCountedReceiver() {}

// Asserts that Callback is not the first owner of a ref-counted receiver.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
    MakeFunctorTraits<Functor>::is_method &&
    IsPointerV<std::decay_t<Receiver>> &&
    IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {
  DCHECK(receiver);

  // It's error prone to make the implicit first reference to ref-counted types.
  // In the example below, base::BindOnce() would make the implicit first
  // reference to the ref-counted Foo. If PostTask() failed or the posted task
  // ran fast enough, the newly created instance could be destroyed before `oo`
  // makes another reference.
  //   Foo::Foo() {
  //     base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
  //   }
  //
  //   scoped_refptr<Foo> oo = new Foo();
  //
  // Hence, base::Bind{Once,Repeating}() refuses to create the first reference
  // to ref-counted objects, and DCHECK()s otherwise. As above, that typically
  // happens around PostTask() in their constructor, and such objects can be
  // destroyed before `new` returns if the task resolves fast enough.
  //
  // Instead of doing the above, please consider adding a static constructor,
  // and keep the first reference alive explicitly.
  //   // static
  //   scoped_refptr<Foo> Foo::Create() {
  //     auto foo = base::WrapRefCounted(new Foo());
  //     base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
  //     return foo;
  //   }
  //
  //   Foo::Foo() {}
  //
  //   scoped_refptr<Foo> oo = Foo::Create();
  DCHECK(receiver->HasAtLeastOneRef());
}

// BindState<>
//
// This stores all the state passed into Bind().
template <typename Functor, typename... BoundArgs>
struct BindState final : BindStateBase {
  using IsCancellable = std::bool_constant<
      CallbackCancellationTraits<Functor,
                                 std::tuple<BoundArgs...>>::is_cancellable>;
  template <typename ForwardFunctor, typename... ForwardBoundArgs>
  static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
                           ForwardFunctor&& functor,
                           ForwardBoundArgs&&... bound_args) {
    // Ban ref counted receivers that were not yet fully constructed to avoid
    // a common pattern of racy situation.
    BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);

    // IsCancellable is std::false_type if
    // CallbackCancellationTraits<>::IsCancelled returns always false.
    // Otherwise, it's std::true_type.
    return new BindState(IsCancellable{}, invoke_func,
                         std::forward<ForwardFunctor>(functor),
                         std::forward<ForwardBoundArgs>(bound_args)...);
  }

  Functor functor_;
  std::tuple<BoundArgs...> bound_args_;

 private:
  static constexpr bool is_nested_callback =
      MakeFunctorTraits<Functor>::is_callback;

  template <typename ForwardFunctor, typename... ForwardBoundArgs>
  explicit BindState(std::true_type,
                     BindStateBase::InvokeFuncStorage invoke_func,
                     ForwardFunctor&& functor,
                     ForwardBoundArgs&&... bound_args)
      : BindStateBase(invoke_func,
                      &Destroy,
                      &QueryCancellationTraits<BindState>),
        functor_(std::forward<ForwardFunctor>(functor)),
        bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
    // We check the validity of nested callbacks (e.g., Bind(callback, ...)) in
    // release builds to avoid null pointers from ending up in posted tasks,
    // causing hard-to-diagnose crashes. Ideally we'd do this for all functors
    // here, but that would have a large binary size impact.
    if (is_nested_callback) {
      CHECK(!IsNull(functor_));
    } else {
      DCHECK(!IsNull(functor_));
    }
  }

  template <typename ForwardFunctor, typename... ForwardBoundArgs>
  explicit BindState(std::false_type,
                     BindStateBase::InvokeFuncStorage invoke_func,
                     ForwardFunctor&& functor,
                     ForwardBoundArgs&&... bound_args)
      : BindStateBase(invoke_func, &Destroy),
        functor_(std::forward<ForwardFunctor>(functor)),
        bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
    // See above for CHECK/DCHECK rationale.
    if (is_nested_callback) {
      CHECK(!IsNull(functor_));
    } else {
      DCHECK(!IsNull(functor_));
    }
  }

  ~BindState() = default;

  static void Destroy(const BindStateBase* self) {
    delete static_cast<const BindState*>(self);
  }
};

// Used to implement MakeBindStateType.
template <bool is_method, typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl;

template <typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
  static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
                "A parameter is a refcounted type and needs scoped_refptr.");
  using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>;
};

template <typename Functor>
struct MakeBindStateTypeImpl<true, Functor> {
  using Type = BindState<std::decay_t<Functor>>;
};

template <typename Functor, typename Receiver, typename... BoundArgs>
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
 private:
  using DecayedReceiver = std::decay_t<Receiver>;
  static_assert(!std::is_array_v<std::remove_reference_t<Receiver>>,
                "First bound argument to a method cannot be an array.");
  static_assert(
      !IsRawRefV<DecayedReceiver>,
      "Receivers may not be raw_ref<T>. If using a raw_ref<T> here is safe"
      " and has no lifetime concerns, use base::Unretained() and document why"
      " it's safe.");
  static_assert(
      !IsPointerV<DecayedReceiver> ||
          IsRefCountedType<RemovePointerT<DecayedReceiver>>::value,
      "Receivers may not be raw pointers. If using a raw pointer here is safe"
      " and has no lifetime concerns, use base::Unretained() and document why"
      " it's safe.");

  static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
                "A parameter is a refcounted type and needs scoped_refptr.");

  using ReceiverStorageType =
      typename MethodReceiverStorageType<DecayedReceiver>::Type;

 public:
  using Type = BindState<std::decay_t<Functor>,
                         ReceiverStorageType,
                         MakeStorageType<BoundArgs>...>;
};

template <typename Functor, typename... BoundArgs>
using MakeBindStateType =
    typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
                                   Functor,
                                   BoundArgs...>::Type;

// Returns a RunType of bound functor.
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
template <typename Functor, typename... BoundArgs>
using MakeUnboundRunType =
    typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;

// The implementation of TransformToUnwrappedType below.
template <bool is_once, typename T>
struct TransformToUnwrappedTypeImpl;

template <typename T>
struct TransformToUnwrappedTypeImpl<true, T> {
  using StoredType = std::decay_t<T>;
  using ForwardType = StoredType&&;
  using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};

template <typename T>
struct TransformToUnwrappedTypeImpl<false, T> {
  using StoredType = std::decay_t<T>;
  using ForwardType = const StoredType&;
  using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};

// Transform |T| into `Unwrapped` type, which is passed to the target function.
// Example:
//   In is_once == true case,
//     `int&&` -> `int&&`,
//     `const int&` -> `int&&`,
//     `OwnedWrapper<int>&` -> `int*&&`.
//   In is_once == false case,
//     `int&&` -> `const int&`,
//     `const int&` -> `const int&`,
//     `OwnedWrapper<int>&` -> `int* const &`.
template <bool is_once, typename T>
using TransformToUnwrappedType =
    typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped;

// Transforms |Args| into `Unwrapped` types, and packs them into a TypeList.
// If |is_method| is true, tries to dereference the first argument to support
// smart pointers.
template <bool is_once, bool is_method, typename... Args>
struct MakeUnwrappedTypeListImpl {
  using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
};

// Performs special handling for this pointers.
// Example:
//   int* -> int*,
//   std::unique_ptr<int> -> int*.
template <bool is_once, typename Receiver, typename... Args>
struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> {
  using ReceiverStorageType =
      typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type;
  using UnwrappedReceiver =
      TransformToUnwrappedType<is_once, ReceiverStorageType>;
  using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()),
                        TransformToUnwrappedType<is_once, Args>...>;
};

template <bool is_once, bool is_method, typename... Args>
using MakeUnwrappedTypeList =
    typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type;

// IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback.
template <typename T>
struct IsOnceCallback : std::false_type {};

template <typename Signature>
struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {};

// IsUnretainedMayDangle is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>.
// Note that it is false for unretained_traits::MayDangleUntriaged.
template <typename StorageType>
inline constexpr bool IsUnretainedMayDangle = false;
template <typename T, RawPtrTraits PtrTraits>
inline constexpr bool IsUnretainedMayDangle<
    UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;

// UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and
// FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's
// ::GetPtrType is the same type as the latter.
template <typename StorageType, typename FunctionParamType>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
template <typename T,
          RawPtrTraits PtrTraitsInUnretained,
          RawPtrTraits PtrTraitsInReceiver>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
    UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
    raw_ptr<T, PtrTraitsInReceiver>> =
    std::is_same_v<
        typename UnretainedWrapper<T,
                                   unretained_traits::MayDangle,
                                   PtrTraitsInUnretained>::GetPtrType,
        raw_ptr<T, PtrTraitsInReceiver>>;

// Helpers to make error messages slightly more readable.
template <int i>
struct BindArgument {
  template <typename ForwardingType>
  struct ForwardedAs {
    template <typename FunctorParamType>
    struct ToParamWithType {
      static constexpr bool kNotARawPtr = !IsRawPtrV<FunctorParamType>;

      static constexpr bool kCanBeForwardedToBoundFunctor =
          std::is_convertible_v<ForwardingType, FunctorParamType>;

      // If the bound type can't be forwarded then test if `FunctorParamType` is
      // a non-const lvalue reference and a reference to the unwrapped type
      // *could* have been successfully forwarded.
      static constexpr bool kNonConstRefParamMustBeWrapped =
          kCanBeForwardedToBoundFunctor ||
          !(std::is_lvalue_reference_v<FunctorParamType> &&
            !std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
            std::is_convertible_v<std::decay_t<ForwardingType>&,
                                  FunctorParamType>);

      // Note that this intentionally drops the const qualifier from
      // `ForwardingType`, to test if it *could* have been successfully
      // forwarded if `Passed()` had been used.
      static constexpr bool kMoveOnlyTypeMustUseBasePassed =
          kCanBeForwardedToBoundFunctor ||
          !std::is_convertible_v<std::decay_t<ForwardingType>&&,
                                 FunctorParamType>;
    };
  };

  template <typename BoundAsType>
  struct BoundAs {
    template <typename StorageType>
    struct StoredAs {
      static constexpr bool kBindArgumentCanBeCaptured =
          std::is_constructible_v<StorageType, BoundAsType>;
      // Note that this intentionally drops the const qualifier from
      // `BoundAsType`, to test if it *could* have been successfully bound if
      // `std::move()` had been used.
      static constexpr bool kMoveOnlyTypeMustUseStdMove =
          kBindArgumentCanBeCaptured ||
          !std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>;
    };
  };

  template <typename FunctionParamType>
  struct ToParamWithType {
    template <typename StorageType>
    struct StoredAs {
      template <bool is_method>
      // true if we are handling `this` parameter.
      static constexpr bool kParamIsThisPointer = is_method && i == 0;
      // true if the current parameter is of type `raw_ptr<T>` with
      // `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`).
      static constexpr bool kParamIsDanglingRawPtr =
          IsRawPtrMayDangleV<FunctionParamType>;
      // true if the bound parameter is of type
      // `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`.
      static constexpr bool kBoundPtrMayDangle =
          IsUnretainedMayDangle<StorageType>;
      // true if bound parameter of type `UnretainedWrapper` and parameter of
      // type `raw_ptr` have compatible `RawPtrTraits`.
      static constexpr bool kMayBeDanglingTraitsCorrectness =
          UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
                                                  FunctionParamType>;
      // true if the receiver argument **must** be of type `MayBeDangling<T>`.
      static constexpr bool kMayBeDanglingMustBeUsed =
          kBoundPtrMayDangle && kParamIsDanglingRawPtr;

      // true iff:
      // - bound parameter is of type
      //   `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`
      // - the receiving argument is of type `MayBeDangling<T>`
      template <bool is_method>
      static constexpr bool kMayBeDanglingPtrPassedCorrectly =
          kParamIsThisPointer<is_method> ||
          kBoundPtrMayDangle == kParamIsDanglingRawPtr;

      // true if:
      // - MayBeDangling<T> must not be used as receiver parameter.
      // OR
      // - MayBeDangling<T> must be used as receiver parameter and its traits
      // are matching Unretained traits.
      static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits =
          !kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness;
    };
  };
};

// Helper to assert that parameter |i| of type |Arg| can be bound, which means:
// - |Arg| can be retained internally as |Storage|.
// - |Arg| can be forwarded as |Unwrapped| to |Param|.
template <int i,
          bool is_method,
          typename Arg,
          typename Storage,
          typename Unwrapped,
          typename Param>
struct AssertConstructible {
 private:
  // We forbid callbacks to use raw_ptr as a parameter. However, we allow
  // MayBeDangling<T> iff the callback argument was created using
  // `base::UnsafeDangling`.
  static_assert(
      BindArgument<i>::template ForwardedAs<
          Unwrapped>::template ToParamWithType<Param>::kNotARawPtr ||
          BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
              Storage>::kMayBeDanglingMustBeUsed,
      "base::Bind() target functor has a parameter of type raw_ptr<T>. "
      "raw_ptr<T> should not be used for function parameters, please use T* or "
      "T& instead.");

  // A bound functor must take a dangling pointer argument (e.g. bound using the
  // UnsafeDangling helper) as a MayBeDangling<T>, to make it clear that the
  // pointee's lifetime must be externally validated before using it. For
  // methods, exempt a bound receiver (i.e. the this pointer) as it is not
  // passed as a regular function argument.
  static_assert(
      BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
          Storage>::template kMayBeDanglingPtrPassedCorrectly<is_method>,
      "base::UnsafeDangling() pointers must be received by functors with "
      "MayBeDangling<T> as parameter.");

  static_assert(
      BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
          Storage>::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits,
      "MayBeDangling<T> parameter must receive the same RawPtrTraits as the "
      "one passed to the corresponding base::UnsafeDangling() call.");

  // With `BindRepeating`, there are two decision points for how to handle a
  // move-only type:
  //
  // 1. Whether the move-only argument should be moved into the internal
  //    `BindState`. Either `std::move()` or `Passed` is sufficient to trigger
  //    move-only semantics.
  // 2. Whether or not the bound, move-only argument should be moved to the
  //    bound functor when invoked. When the argument is bound with `Passed`,
  //    invoking the callback will destructively move the bound, move-only
  //    argument to the bound functor. In contrast, if the argument is bound
  //    with `std::move()`, `RepeatingCallback` will attempt to call the bound
  //    functor with a constant reference to the bound, move-only argument. This
  //    will fail if the bound functor accepts that argument by value, since the
  //    argument cannot be copied. It is this latter case that this
  //    static_assert aims to catch.
  //
  // In contrast, `BindOnce()` only has one decision point. Once a move-only
  // type is captured by value into the internal `BindState`, the bound,
  // move-only argument will always be moved to the functor when invoked.
  // Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove`
  // assert below instead.
  //
  // Note: `Passed()` is a legacy of supporting move-only types when repeating
  // callbacks were the only callback type. A `RepeatingCallback` with a
  // `Passed()` argument is really a `OnceCallback` and should eventually be
  // migrated.
  static_assert(
      BindArgument<i>::template ForwardedAs<Unwrapped>::
          template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed,
      "base::BindRepeating() argument is a move-only type. Use base::Passed() "
      "instead of std::move() to transfer ownership from the callback to the "
      "bound functor.");
  static_assert(
      BindArgument<i>::template ForwardedAs<Unwrapped>::
          template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped,
      "Bound argument for non-const reference parameter must be wrapped in "
      "std::ref() or base::OwnedRef().");
  static_assert(
      BindArgument<i>::template ForwardedAs<Unwrapped>::
          template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor,
      "Type mismatch between bound argument and bound functor's parameter.");

  static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs<
                    Storage>::kMoveOnlyTypeMustUseStdMove,
                "Attempting to bind a move-only type. Use std::move() to "
                "transfer ownership to the created callback.");
  // In practice, this static_assert should be quite rare as the storage type
  // is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`.
  static_assert(
      BindArgument<i>::template BoundAs<Arg>::template StoredAs<
          Storage>::kBindArgumentCanBeCaptured,
      "Cannot capture argument: is the argument copyable or movable?");
};

// Takes three same-length TypeLists, and applies AssertConstructible for each
// triples.
template <bool is_method,
          typename Index,
          typename Args,
          typename UnwrappedTypeList,
          typename ParamsList>
struct AssertBindArgsValidity;

template <bool is_method,
          size_t... Ns,
          typename... Args,
          typename... Unwrapped,
          typename... Params>
struct AssertBindArgsValidity<is_method,
                              std::index_sequence<Ns...>,
                              TypeList<Args...>,
                              TypeList<Unwrapped...>,
                              TypeList<Params...>>
    : AssertConstructible<Ns,
                          is_method,
                          Args,
                          std::decay_t<Args>,
                          Unwrapped,
                          Params>... {
  static constexpr bool ok = true;
};

template <typename T>
struct AssertBindArgIsNotBasePassed : public std::true_type {};

template <typename T>
struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type {
};

template <template <typename> class CallbackT,
          typename Functor,
          typename... Args>
decltype(auto) BindImpl(Functor&& functor, Args&&... args) {
  // This block checks if each |args| matches to the corresponding params of the
  // target function. This check does not affect the behavior of Bind, but its
  // error message should be more readable.
  static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value;
  using Helper = BindTypeHelper<Functor, Args...>;
  using FunctorTraits = typename Helper::FunctorTraits;
  using BoundArgsList = typename Helper::BoundArgsList;
  using UnwrappedArgsList =
      MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>;
  using BoundParamsList = typename Helper::BoundParamsList;
  static_assert(
      MakeFunctorTraits<Functor>::is_stateless,
      "Capturing lambdas and stateful lambdas are intentionally not supported. "
      "Please use base::Bind{Once,Repeating} directly to bind arguments.");
  static_assert(
      AssertBindArgsValidity<FunctorTraits::is_method,
                             std::make_index_sequence<Helper::num_bounds>,
                             BoundArgsList, UnwrappedArgsList,
                             BoundParamsList>::ok,
      "The bound args need to be convertible to the target params.");

  using BindState = MakeBindStateType<Functor, Args...>;
  using UnboundRunType = MakeUnboundRunType<Functor, Args...>;
  using Invoker = Invoker<BindState, UnboundRunType>;
  using CallbackType = CallbackT<UnboundRunType>;

  // Store the invoke func into PolymorphicInvoke before casting it to
  // InvokeFuncStorage, so that we can ensure its type matches to
  // PolymorphicInvoke, to which CallbackType will cast back.
  using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke;
  PolymorphicInvoke invoke_func;
  if constexpr (kIsOnce) {
    invoke_func = Invoker::RunOnce;
  } else {
    invoke_func = Invoker::Run;
  }

  using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
  return CallbackType(BindState::Create(
      reinterpret_cast<InvokeFuncStorage>(invoke_func),
      std::forward<Functor>(functor), std::forward<Args>(args)...));
}

// Special cases for binding to a base::{Once, Repeating}Callback without extra
// bound arguments. We CHECK() the validity of callback to guard against null
// pointers accidentally ending up in posted tasks, causing hard-to-debug
// crashes.
template <template <typename> class CallbackT,
          typename Signature,
          std::enable_if_t<std::is_same_v<CallbackT<Signature>,
                                          OnceCallback<Signature>>>* = nullptr>
OnceCallback<Signature> BindImpl(OnceCallback<Signature> callback) {
  CHECK(callback);
  return callback;
}

template <template <typename> class CallbackT,
          typename Signature,
          std::enable_if_t<std::is_same_v<CallbackT<Signature>,
                                          OnceCallback<Signature>>>* = nullptr>
OnceCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
  CHECK(callback);
  return callback;
}

template <template <typename> class CallbackT,
          typename Signature,
          std::enable_if_t<std::is_same_v<CallbackT<Signature>,
                                          RepeatingCallback<Signature>>>* =
              nullptr>
RepeatingCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
  CHECK(callback);
  return callback;
}

template <template <typename> class CallbackT, typename Signature>
auto BindImpl(absl::FunctionRef<Signature>, ...) {
  static_assert(
      AlwaysFalse<Signature>,
      "base::Bind{Once,Repeating} require strong ownership: non-owning "
      "function references may not bound as the functor due to potential "
      "lifetime issues.");
  return nullptr;
}

template <template <typename> class CallbackT, typename Signature>
auto BindImpl(FunctionRef<Signature>, ...) {
  static_assert(
      AlwaysFalse<Signature>,
      "base::Bind{Once,Repeating} require strong ownership: non-owning "
      "function references may not bound as the functor due to potential "
      "lifetime issues.");
  return nullptr;
}

}  // namespace internal

// An injection point to control |this| pointer behavior on a method invocation.
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
// method, base::Bind cancels the method invocation if the receiver is tested as
// false.
// E.g. Foo::bar() is not called:
//   struct Foo : base::SupportsWeakPtr<Foo> {
//     void bar() {}
//   };
//
//   WeakPtr<Foo> oo = nullptr;
//   base::BindOnce(&Foo::bar, oo).Run();
template <typename T>
struct IsWeakReceiver : std::false_type {};

template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};

template <typename T>
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};

// An injection point to control how objects are checked for maybe validity,
// which is an optimistic thread-safe check for full validity.
template <typename>
struct MaybeValidTraits {
  template <typename T>
  static bool MaybeValid(const T& o) {
    return o.MaybeValid();
  }
};

// An injection point to control how bound objects passed to the target
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
// before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
  template <typename T>
  static T&& Unwrap(T&& o) {
    return std::forward<T>(o);
  }
};

template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
    internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> {
  static auto Unwrap(
      const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) {
    return o.get();
  }
};

template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
    internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
  static T& Unwrap(
      const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) {
    return o.get();
  }
};

template <typename T>
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
  static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
};

template <typename T, typename Deleter>
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
  static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
    return o.get();
  }
};

template <typename T>
struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> {
  static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); }
};

template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
  static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};

#if BUILDFLAG(IS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
  static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif

// CallbackCancellationTraits allows customization of Callback's cancellation
// semantics. By default, callbacks are not cancellable. A specialization should
// set is_cancellable = true and implement an IsCancelled() that returns if the
// callback should be cancelled.
template <typename Functor, typename BoundArgsTuple, typename SFINAE>
struct CallbackCancellationTraits {
  static constexpr bool is_cancellable = false;
};

// Specialization for method bound to weak pointer receiver.
template <typename Functor, typename... BoundArgs>
struct CallbackCancellationTraits<
    Functor,
    std::tuple<BoundArgs...>,
    std::enable_if_t<
        internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
                               BoundArgs...>::value>> {
  static constexpr bool is_cancellable = true;

  template <typename Receiver, typename... Args>
  static bool IsCancelled(const Functor&,
                          const Receiver& receiver,
                          const Args&...) {
    return !receiver;
  }

  template <typename Receiver, typename... Args>
  static bool MaybeValid(const Functor&,
                         const Receiver& receiver,
                         const Args&...) {
    return MaybeValidTraits<Receiver>::MaybeValid(receiver);
  }
};

// Specialization for a nested bind.
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<OnceCallback<Signature>,
                                  std::tuple<BoundArgs...>> {
  static constexpr bool is_cancellable = true;

  template <typename Functor>
  static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
    return functor.IsCancelled();
  }

  template <typename Functor>
  static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
    return MaybeValidTraits<Functor>::MaybeValid(functor);
  }
};

template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
                                  std::tuple<BoundArgs...>> {
  static constexpr bool is_cancellable = true;

  template <typename Functor>
  static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
    return functor.IsCancelled();
  }

  template <typename Functor>
  static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
    return MaybeValidTraits<Functor>::MaybeValid(functor);
  }
};

}  // namespace base

#endif  // BASE_FUNCTIONAL_BIND_INTERNAL_H_