1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/hash/sha1.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "base/sys_byteorder.h"
namespace base {
// Implementation of SHA-1. Only handles data in byte-sized blocks,
// which simplifies the code a fair bit.
// Identifier names follow notation in FIPS PUB 180-3, where you'll
// also find a description of the algorithm:
// http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
// Usage example:
//
// SecureHashAlgorithm sha;
// while(there is data to hash)
// sha.Update(moredata, size of data);
// sha.Final();
// memcpy(somewhere, sha.Digest(), 20);
//
// to reuse the instance of sha, call sha.Init();
static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) {
if (t < 20)
return (B & C) | ((~B) & D);
if (t < 40)
return B ^ C ^ D;
if (t < 60)
return (B & C) | (B & D) | (C & D);
return B ^ C ^ D;
}
static inline uint32_t S(uint32_t n, uint32_t X) {
return (X << n) | (X >> (32 - n));
}
static inline uint32_t K(uint32_t t) {
if (t < 20)
return 0x5a827999;
if (t < 40)
return 0x6ed9eba1;
if (t < 60)
return 0x8f1bbcdc;
return 0xca62c1d6;
}
void SHA1Context::Init() {
A = 0;
B = 0;
C = 0;
D = 0;
E = 0;
cursor = 0;
l = 0;
H[0] = 0x67452301;
H[1] = 0xefcdab89;
H[2] = 0x98badcfe;
H[3] = 0x10325476;
H[4] = 0xc3d2e1f0;
}
void SHA1Context::Update(const void* data, size_t nbytes) {
const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
while (nbytes--) {
M[cursor++] = *d++;
if (cursor >= 64) {
Process();
}
l += 8;
}
}
void SHA1Context::Final() {
Pad();
Process();
for (auto& t : H) {
t = ByteSwap(t);
}
}
const unsigned char* SHA1Context::GetDigest() const {
return reinterpret_cast<const unsigned char*>(H);
}
void SHA1Context::Pad() {
M[cursor++] = 0x80;
if (cursor > 64 - 8) {
// pad out to next block
while (cursor < 64) {
M[cursor++] = 0;
}
Process();
}
while (cursor < 64 - 8) {
M[cursor++] = 0;
}
M[cursor++] = (l >> 56) & 0xff;
M[cursor++] = (l >> 48) & 0xff;
M[cursor++] = (l >> 40) & 0xff;
M[cursor++] = (l >> 32) & 0xff;
M[cursor++] = (l >> 24) & 0xff;
M[cursor++] = (l >> 16) & 0xff;
M[cursor++] = (l >> 8) & 0xff;
M[cursor++] = l & 0xff;
}
void SHA1Context::Process() {
uint32_t t;
// Each a...e corresponds to a section in the FIPS 180-3 algorithm.
// a.
//
// W and M are in a union, so no need to memcpy.
// memcpy(W, M, sizeof(M));
for (t = 0; t < 16; ++t) {
W[t] = ByteSwap(W[t]);
}
// b.
for (t = 16; t < 80; ++t) {
W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
}
// c.
A = H[0];
B = H[1];
C = H[2];
D = H[3];
E = H[4];
// d.
for (t = 0; t < 80; ++t) {
uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
}
// e.
H[0] += A;
H[1] += B;
H[2] += C;
H[3] += D;
H[4] += E;
cursor = 0;
}
// These functions allow streaming SHA-1 operations.
void SHA1Init(SHA1Context& context) {
context.Init();
}
void SHA1Update(const StringPiece data, SHA1Context& context) {
context.Update(data.data(), data.size());
}
void SHA1Final(SHA1Context& context, SHA1Digest& digest) {
context.Final();
memcpy(digest.data(), context.GetDigest(), kSHA1Length);
}
SHA1Digest SHA1HashSpan(span<const uint8_t> data) {
SHA1Digest hash;
SHA1HashBytes(data.data(), data.size(), hash.data());
return hash;
}
std::string SHA1HashString(StringPiece str) {
char hash[kSHA1Length];
SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.data()),
str.length(), reinterpret_cast<unsigned char*>(hash));
return std::string(hash, kSHA1Length);
}
void SHA1HashBytes(const unsigned char* data, size_t len, unsigned char* hash) {
SHA1Context context;
context.Init();
context.Update(data, len);
context.Final();
memcpy(hash, context.GetDigest(), kSHA1Length);
}
} // namespace base
|