1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Create a state machine for validating UTF-8. The algorithm in brief:
// 1. Convert the complete unicode range of code points, except for the
// surrogate code points, to an ordered array of sequences of bytes in
// UTF-8.
// 2. Convert individual bytes to ranges, starting from the right of each byte
// sequence. For each range, ensure the bytes on the left and the ranges
// on the right are the identical.
// 3. Convert the resulting list of ranges into a state machine, collapsing
// identical states.
// 4. Convert the state machine to an array of bytes.
// 5. Output as a C++ file.
//
// To use:
// $ ninja -C out/Release build_utf8_validator_tables
// $ out/Release/build_utf8_validator_tables
// --output=base/i18n/utf8_validator_tables.cc
// $ git add base/i18n/utf8_validator_tables.cc
//
// Because the table is not expected to ever change, it is checked into the
// repository rather than being regenerated at build time.
//
// This code uses type uint8_t throughout to represent bytes, to avoid
// signed/unsigned char confusion.
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "base/command_line.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "third_party/icu/source/common/unicode/utf8.h"
namespace {
const char kHelpText[] =
"Usage: build_utf8_validator_tables [ --help ] [ --output=<file> ]\n";
const char kProlog[] =
"// Copyright 2013 The Chromium Authors\n"
"// Use of this source code is governed by a BSD-style license that can "
"be\n"
"// found in the LICENSE file.\n"
"\n"
"// This file is auto-generated by build_utf8_validator_tables.\n"
"// DO NOT EDIT.\n"
"\n"
"#include \"base/i18n/utf8_validator_tables.h\"\n"
"\n"
"namespace base {\n"
"namespace internal {\n"
"\n"
"const uint8_t kUtf8ValidatorTables[] = {\n";
const char kEpilog[] =
"};\n"
"\n"
"const size_t kUtf8ValidatorTablesSize = "
"std::size(kUtf8ValidatorTables);\n"
"\n"
"} // namespace internal\n"
"} // namespace base\n";
// Ranges are inclusive at both ends--they represent [from, to]
class Range {
public:
// Ranges always start with just one byte.
explicit Range(uint8_t value) : from_(value), to_(value) {}
// Range objects are copyable and assignable to be used in STL
// containers. Since they only contain non-pointer POD types, the default copy
// constructor, assignment operator and destructor will work.
// Add a byte to the range. We intentionally only support adding a byte at the
// end, since that is the only operation the code needs.
void AddByte(uint8_t to) {
CHECK(to == to_ + 1);
to_ = to;
}
uint8_t from() const { return from_; }
uint8_t to() const { return to_; }
bool operator<(const Range& rhs) const {
return (from() < rhs.from() || (from() == rhs.from() && to() < rhs.to()));
}
bool operator==(const Range& rhs) const {
return from() == rhs.from() && to() == rhs.to();
}
private:
uint8_t from_;
uint8_t to_;
};
// A vector of Ranges is like a simple regular expression--it corresponds to
// a set of strings of the same length that have bytes in each position in
// the appropriate range.
typedef std::vector<Range> StringSet;
// A UTF-8 "character" is represented by a sequence of bytes.
typedef std::vector<uint8_t> Character;
// In the second stage of the algorithm, we want to convert a large list of
// Characters into a small list of StringSets.
struct Pair {
Character character;
StringSet set;
};
typedef std::vector<Pair> PairVector;
// A class to print a table of numbers in the same style as clang-format.
class TablePrinter {
public:
explicit TablePrinter(FILE* stream)
: stream_(stream), values_on_this_line_(0), current_offset_(0) {}
TablePrinter(const TablePrinter&) = delete;
TablePrinter& operator=(const TablePrinter&) = delete;
void PrintValue(uint8_t value) {
if (values_on_this_line_ == 0) {
fputs(" ", stream_);
} else if (values_on_this_line_ == kMaxValuesPerLine) {
fprintf(stream_.get(), " // 0x%02x\n ", current_offset_);
values_on_this_line_ = 0;
}
fprintf(stream_.get(), " 0x%02x,", static_cast<int>(value));
++values_on_this_line_;
++current_offset_;
}
void NewLine() {
while (values_on_this_line_ < kMaxValuesPerLine) {
fputs(" ", stream_);
++values_on_this_line_;
}
fprintf(stream_.get(), " // 0x%02x\n", current_offset_);
values_on_this_line_ = 0;
}
private:
// stdio stream. Not owned.
raw_ptr<FILE> stream_;
// Number of values so far printed on this line.
int values_on_this_line_;
// Total values printed so far.
int current_offset_;
static const int kMaxValuesPerLine = 8;
};
// Start by filling a PairVector with characters. The resulting vector goes from
// "\x00" to "\xf4\x8f\xbf\xbf".
PairVector InitializeCharacters() {
PairVector vector;
for (int i = 0; i <= 0x10FFFF; ++i) {
if (i >= 0xD800 && i < 0xE000) {
// Surrogate codepoints are not permitted. Non-character code points are
// explicitly permitted.
continue;
}
uint8_t bytes[4];
unsigned int offset = 0;
UBool is_error = false;
U8_APPEND(bytes, offset, std::size(bytes), i, is_error);
DCHECK(!is_error);
DCHECK_GT(offset, 0u);
DCHECK_LE(offset, std::size(bytes));
Pair pair = {Character(bytes, bytes + offset), StringSet()};
vector.push_back(pair);
}
return vector;
}
// Construct a new Pair from |character| and the concatenation of |new_range|
// and |existing_set|, and append it to |pairs|.
void ConstructPairAndAppend(const Character& character,
const Range& new_range,
const StringSet& existing_set,
PairVector* pairs) {
Pair new_pair = {character, StringSet(1, new_range)};
new_pair.set.insert(
new_pair.set.end(), existing_set.begin(), existing_set.end());
pairs->push_back(new_pair);
}
// Each pass over the PairVector strips one byte off the right-hand-side of the
// characters and adds a range to the set on the right. For example, the first
// pass converts the range from "\xe0\xa0\x80" to "\xe0\xa0\xbf" to ("\xe0\xa0",
// [\x80-\xbf]), then the second pass converts the range from ("\xe0\xa0",
// [\x80-\xbf]) to ("\xe0\xbf", [\x80-\xbf]) to ("\xe0",
// [\xa0-\xbf][\x80-\xbf]).
void MoveRightMostCharToSet(PairVector* pairs) {
PairVector new_pairs;
PairVector::const_iterator it = pairs->begin();
while (it != pairs->end() && it->character.empty()) {
new_pairs.push_back(*it);
++it;
}
CHECK(it != pairs->end());
Character unconverted_bytes(it->character.begin(), it->character.end() - 1);
Range new_range(it->character.back());
StringSet converted = it->set;
++it;
while (it != pairs->end()) {
const Pair& current_pair = *it++;
if (current_pair.character.size() == unconverted_bytes.size() + 1 &&
std::equal(unconverted_bytes.begin(),
unconverted_bytes.end(),
current_pair.character.begin()) &&
converted == current_pair.set) {
// The particular set of UTF-8 codepoints we are validating guarantees
// that each byte range will be contiguous. This would not necessarily be
// true for an arbitrary set of UTF-8 codepoints.
DCHECK_EQ(new_range.to() + 1, current_pair.character.back());
new_range.AddByte(current_pair.character.back());
continue;
}
ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
unconverted_bytes = Character(current_pair.character.begin(),
current_pair.character.end() - 1);
new_range = Range(current_pair.character.back());
converted = current_pair.set;
}
ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
new_pairs.swap(*pairs);
}
void MoveAllCharsToSets(PairVector* pairs) {
// Since each pass of the function moves one character, and UTF-8 sequences
// are at most 4 characters long, this simply runs the algorithm four times.
for (int i = 0; i < 4; ++i) {
MoveRightMostCharToSet(pairs);
}
#if DCHECK_IS_ON()
for (PairVector::const_iterator it = pairs->begin(); it != pairs->end();
++it) {
DCHECK(it->character.empty());
}
#endif
}
// Logs the generated string sets in regular-expression style, ie. [\x00-\x7f],
// [\xc2-\xdf][\x80-\xbf], etc. This can be a useful sanity-check that the
// algorithm is working. Use the command-line option
// --vmodule=build_utf8_validator_tables=1 to see this output.
void LogStringSets(const PairVector& pairs) {
for (const auto& pair_it : pairs) {
std::string set_as_string;
for (auto set_it = pair_it.set.begin(); set_it != pair_it.set.end();
++set_it) {
set_as_string += base::StringPrintf("[\\x%02x-\\x%02x]",
static_cast<int>(set_it->from()),
static_cast<int>(set_it->to()));
}
VLOG(1) << set_as_string;
}
}
// A single state in the state machine is represented by a sorted vector of
// start bytes and target states. All input bytes in the range between the start
// byte and the next entry in the vector (or 0xFF) result in a transition to the
// target state.
struct StateRange {
uint8_t from;
uint8_t target_state;
};
typedef std::vector<StateRange> State;
// Generates a state where all bytes go to state 1 (invalid). This is also used
// as an initialiser for other states (since bytes from outside the desired
// range are invalid).
State GenerateInvalidState() {
const StateRange range = {0, 1};
return State(1, range);
}
// A map from a state (ie. a set of strings which will match from this state) to
// a number (which is an index into the array of states).
typedef std::map<StringSet, uint8_t> StateMap;
// Create a new state corresponding to |set|, add it |states| and |state_map|
// and return the index it was given in |states|.
uint8_t MakeState(const StringSet& set,
std::vector<State>* states,
StateMap* state_map) {
DCHECK(!set.empty());
const Range& range = set.front();
const StringSet rest(set.begin() + 1, set.end());
const StateMap::const_iterator where = state_map->find(rest);
const uint8_t target_state = where == state_map->end()
? MakeState(rest, states, state_map)
: where->second;
DCHECK_LT(0, range.from());
DCHECK_LT(range.to(), 0xFF);
const StateRange new_state_initializer[] = {
{0, 1},
{range.from(), target_state},
{static_cast<uint8_t>(range.to() + 1), 1}};
states->push_back(
State(new_state_initializer,
new_state_initializer + std::size(new_state_initializer)));
const uint8_t new_state_number =
base::checked_cast<uint8_t>(states->size() - 1);
CHECK(state_map->insert(std::make_pair(set, new_state_number)).second);
return new_state_number;
}
std::vector<State> GenerateStates(const PairVector& pairs) {
// States 0 and 1 are the initial/valid state and invalid state, respectively.
std::vector<State> states(2, GenerateInvalidState());
StateMap state_map;
state_map.insert(std::make_pair(StringSet(), 0));
for (auto it = pairs.begin(); it != pairs.end(); ++it) {
DCHECK(it->character.empty());
DCHECK(!it->set.empty());
const Range& range = it->set.front();
const StringSet rest(it->set.begin() + 1, it->set.end());
const StateMap::const_iterator where = state_map.find(rest);
const uint8_t target_state = where == state_map.end()
? MakeState(rest, &states, &state_map)
: where->second;
if (states[0].back().from == range.from()) {
DCHECK_EQ(1, states[0].back().target_state);
states[0].back().target_state = target_state;
DCHECK_LT(range.to(), 0xFF);
const StateRange new_range = {static_cast<uint8_t>(range.to() + 1), 1};
states[0].push_back(new_range);
} else {
DCHECK_LT(range.to(), 0xFF);
const StateRange new_range_initializer[] = {
{range.from(), target_state},
{static_cast<uint8_t>(range.to() + 1), 1}};
states[0].insert(
states[0].end(), new_range_initializer,
new_range_initializer + std::size(new_range_initializer));
}
}
return states;
}
// Output the generated states as a C++ table. Two tricks are used to compact
// the table: each state in the table starts with a shift value which indicates
// how many bits we can discard from the right-hand-side of the byte before
// doing the table lookup. Secondly, only the state-transitions for bytes
// with the top-bit set are included in the table; bytes without the top-bit set
// are just ASCII and are handled directly by the code.
void PrintStates(const std::vector<State>& states, FILE* stream) {
// First calculate the start-offset of each state. This allows the state
// machine to jump directly to the correct offset, avoiding an extra
// indirection. State 0 starts at offset 0.
std::vector<uint8_t> state_offset(1, 0);
std::vector<uint8_t> shifts;
uint8_t pos = 0;
for (const auto& state_it : states) {
// We want to set |shift| to the (0-based) index of the least-significant
// set bit in any of the ranges for this state, since this tells us how many
// bits we can discard and still determine what range a byte lies in. Sadly
// it appears that ffs() is not portable, so we do it clumsily.
uint8_t shift = 7;
for (auto range_it = state_it.begin(); range_it != state_it.end();
++range_it) {
while (shift > 0 && range_it->from % (1 << shift) != 0) {
--shift;
}
}
shifts.push_back(shift);
pos += 1 + (1 << (7 - shift));
state_offset.push_back(pos);
}
DCHECK_EQ(129, state_offset[1]);
fputs(kProlog, stream);
TablePrinter table_printer(stream);
for (uint8_t state_index = 0; state_index < states.size(); ++state_index) {
const uint8_t shift = shifts[state_index];
uint8_t next_range = 0;
uint8_t target_state = 1;
fprintf(stream,
" // State %d, offset 0x%02x\n",
static_cast<int>(state_index),
static_cast<int>(state_offset[state_index]));
table_printer.PrintValue(shift);
for (int i = 0; i < 0x100; i += (1 << shift)) {
if (next_range < states[state_index].size() &&
states[state_index][next_range].from == i) {
target_state = states[state_index][next_range].target_state;
++next_range;
}
if (i >= 0x80) {
table_printer.PrintValue(state_offset[target_state]);
}
}
table_printer.NewLine();
}
fputs(kEpilog, stream);
}
} // namespace
int main(int argc, char* argv[]) {
base::CommandLine::Init(argc, argv);
logging::LoggingSettings settings;
settings.logging_dest =
logging::LOG_TO_SYSTEM_DEBUG_LOG | logging::LOG_TO_STDERR;
logging::InitLogging(settings);
if (base::CommandLine::ForCurrentProcess()->HasSwitch("help")) {
fwrite(kHelpText, 1, std::size(kHelpText), stdout);
exit(EXIT_SUCCESS);
}
base::FilePath filename =
base::CommandLine::ForCurrentProcess()->GetSwitchValuePath("output");
FILE* output = stdout;
if (!filename.empty()) {
output = base::OpenFile(filename, "wb");
if (!output)
PLOG(FATAL) << "Couldn't open '" << filename.AsUTF8Unsafe()
<< "' for writing";
}
// Step 1: Enumerate the characters
PairVector pairs = InitializeCharacters();
// Step 2: Convert to sets.
MoveAllCharsToSets(&pairs);
if (VLOG_IS_ON(1)) {
LogStringSets(pairs);
}
// Step 3: Generate states.
std::vector<State> states = GenerateStates(pairs);
// Step 4/5: Print output
PrintStates(states, output);
if (!filename.empty()) {
if (!base::CloseFile(output))
PLOG(FATAL) << "Couldn't finish writing '" << filename.AsUTF8Unsafe()
<< "'";
}
return EXIT_SUCCESS;
}
|