1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fcntl.h>
#include <stdint.h>
#include "base/files/scoped_file.h"
#include "base/memory/discardable_shared_memory.h"
#include "base/memory/page_size.h"
#include "base/memory/shared_memory_tracker.h"
#include "base/tracing_buildflags.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if BUILDFLAG(ENABLE_BASE_TRACING)
#include "base/trace_event/memory_allocator_dump.h" // no-presubmit-check
#include "base/trace_event/process_memory_dump.h" // no-presubmit-check
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
namespace base {
class TestDiscardableSharedMemory : public DiscardableSharedMemory {
public:
TestDiscardableSharedMemory() = default;
explicit TestDiscardableSharedMemory(UnsafeSharedMemoryRegion region)
: DiscardableSharedMemory(std::move(region)) {}
void SetNow(Time now) { now_ = now; }
private:
// Overriden from DiscardableSharedMemory:
Time Now() const override { return now_; }
Time now_;
};
TEST(DiscardableSharedMemoryTest, CreateAndMap) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory;
bool rv = memory.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
EXPECT_GE(memory.mapped_size(), kDataSize);
EXPECT_TRUE(memory.IsMemoryLocked());
}
TEST(DiscardableSharedMemoryTest, CreateFromHandle) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
EXPECT_TRUE(memory2.IsMemoryLocked());
}
TEST(DiscardableSharedMemoryTest, LockAndUnlock) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
// Memory is initially locked. Unlock it.
memory1.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory1.Unlock(0, 0);
EXPECT_FALSE(memory1.IsMemoryLocked());
// Lock and unlock memory.
DiscardableSharedMemory::LockResult lock_rv = memory1.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::SUCCESS, lock_rv);
memory1.SetNow(Time::FromSecondsSinceUnixEpoch(2));
memory1.Unlock(0, 0);
// Lock again before duplicating and passing ownership to new instance.
lock_rv = memory1.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::SUCCESS, lock_rv);
EXPECT_TRUE(memory1.IsMemoryLocked());
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
// Unlock second instance.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(3));
memory2.Unlock(0, 0);
// Both memory instances should be unlocked now.
EXPECT_FALSE(memory2.IsMemoryLocked());
EXPECT_FALSE(memory1.IsMemoryLocked());
// Lock second instance before passing ownership back to first instance.
lock_rv = memory2.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::SUCCESS, lock_rv);
// Memory should still be resident and locked.
rv = memory1.IsMemoryResident();
EXPECT_TRUE(rv);
EXPECT_TRUE(memory1.IsMemoryLocked());
// Unlock first instance.
memory1.SetNow(Time::FromSecondsSinceUnixEpoch(4));
memory1.Unlock(0, 0);
}
TEST(DiscardableSharedMemoryTest, Purge) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
// This should fail as memory is locked.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(1));
EXPECT_FALSE(rv);
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(2));
memory2.Unlock(0, 0);
ASSERT_TRUE(memory2.IsMemoryResident());
// Memory is unlocked, but our usage timestamp is incorrect.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(3));
EXPECT_FALSE(rv);
ASSERT_TRUE(memory2.IsMemoryResident());
// Memory is unlocked and our usage timestamp should be correct.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(4));
EXPECT_TRUE(rv);
// Lock should fail as memory has been purged.
DiscardableSharedMemory::LockResult lock_rv = memory2.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::FAILED, lock_rv);
ASSERT_FALSE(memory2.IsMemoryResident());
}
TEST(DiscardableSharedMemoryTest, PurgeAfterClose) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory;
bool rv = memory.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
// Unlock things so we can Purge().
memory.SetNow(Time::FromSecondsSinceUnixEpoch(2));
memory.Unlock(0, 0);
// It should be safe to Purge() |memory| after Close()ing the handle.
memory.Close();
rv = memory.Purge(Time::FromSecondsSinceUnixEpoch(4));
EXPECT_TRUE(rv);
}
TEST(DiscardableSharedMemoryTest, LastUsed) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory2.Unlock(0, 0);
EXPECT_EQ(memory2.last_known_usage(), Time::FromSecondsSinceUnixEpoch(1));
DiscardableSharedMemory::LockResult lock_rv = memory2.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::SUCCESS, lock_rv);
// This should fail as memory is locked.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(2));
ASSERT_FALSE(rv);
// Last usage should have been updated to timestamp passed to Purge above.
EXPECT_EQ(memory1.last_known_usage(), Time::FromSecondsSinceUnixEpoch(2));
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(3));
memory2.Unlock(0, 0);
// Usage time should be correct for |memory2| instance.
EXPECT_EQ(memory2.last_known_usage(), Time::FromSecondsSinceUnixEpoch(3));
// However, usage time has not changed as far as |memory1| instance knows.
EXPECT_EQ(memory1.last_known_usage(), Time::FromSecondsSinceUnixEpoch(2));
// Memory is unlocked, but our usage timestamp is incorrect.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(4));
EXPECT_FALSE(rv);
// The failed purge attempt should have updated usage time to the correct
// value.
EXPECT_EQ(memory1.last_known_usage(), Time::FromSecondsSinceUnixEpoch(3));
// Purge memory through |memory2| instance. The last usage time should be
// set to 0 as a result of this.
rv = memory2.Purge(Time::FromSecondsSinceUnixEpoch(5));
EXPECT_TRUE(rv);
EXPECT_TRUE(memory2.last_known_usage().is_null());
// This should fail as memory has already been purged and |memory1|'s usage
// time is incorrect as a result.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(6));
EXPECT_FALSE(rv);
// The failed purge attempt should have updated usage time to the correct
// value.
EXPECT_TRUE(memory1.last_known_usage().is_null());
// Purge should succeed now that usage time is correct.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(7));
EXPECT_TRUE(rv);
}
TEST(DiscardableSharedMemoryTest, LockShouldAlwaysFailAfterSuccessfulPurge) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory2.Unlock(0, 0);
rv = memory2.Purge(Time::FromSecondsSinceUnixEpoch(2));
EXPECT_TRUE(rv);
// Lock should fail as memory has been purged.
DiscardableSharedMemory::LockResult lock_rv = memory2.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::FAILED, lock_rv);
}
#if BUILDFLAG(IS_ANDROID)
TEST(DiscardableSharedMemoryTest, LockShouldFailIfPlatformLockPagesFails) {
const uint32_t kDataSize = 1024;
// This test cannot succeed on devices without a proper ashmem device
// because Lock() will always succeed.
if (!DiscardableSharedMemory::IsAshmemDeviceSupportedForTesting())
return;
DiscardableSharedMemory memory1;
bool rv1 = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv1);
base::UnsafeSharedMemoryRegion region = memory1.DuplicateRegion();
int fd = region.GetPlatformHandle();
DiscardableSharedMemory memory2(std::move(region));
bool rv2 = memory2.Map(kDataSize);
ASSERT_TRUE(rv2);
// Unlock() the first page of memory, so we can test Lock()ing it.
memory2.Unlock(0, base::GetPageSize());
// To cause ashmem_pin_region() to fail, we arrange for it to be called with
// an invalid file-descriptor, which requires a valid-looking fd (i.e. we
// can't just Close() |memory|), but one on which the operation is invalid.
// We can overwrite the |memory| fd with a handle to a different file using
// dup2(), which has the nice properties that |memory| still has a valid fd
// that it can close, etc without errors, but on which ashmem_pin_region()
// will fail.
base::ScopedFD null(open("/dev/null", O_RDONLY));
ASSERT_EQ(fd, dup2(null.get(), fd));
// Now re-Lock()ing the first page should fail.
DiscardableSharedMemory::LockResult lock_rv =
memory2.Lock(0, base::GetPageSize());
EXPECT_EQ(DiscardableSharedMemory::FAILED, lock_rv);
}
#endif // BUILDFLAG(IS_ANDROID)
TEST(DiscardableSharedMemoryTest, LockAndUnlockRange) {
const size_t kDataSize = 32;
size_t data_size_in_bytes = kDataSize * base::GetPageSize();
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(data_size_in_bytes);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(data_size_in_bytes);
ASSERT_TRUE(rv);
// Unlock first page.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory2.Unlock(0, base::GetPageSize());
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(2));
EXPECT_FALSE(rv);
// Lock first page again.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(3));
DiscardableSharedMemory::LockResult lock_rv =
memory2.Lock(0, base::GetPageSize());
EXPECT_NE(DiscardableSharedMemory::FAILED, lock_rv);
// Unlock first page.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(4));
memory2.Unlock(0, base::GetPageSize());
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(5));
EXPECT_FALSE(rv);
// Unlock second page.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(6));
memory2.Unlock(base::GetPageSize(), base::GetPageSize());
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(7));
EXPECT_FALSE(rv);
// Unlock anything onwards.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(8));
memory2.Unlock(2 * base::GetPageSize(), 0);
// Memory is unlocked, but our usage timestamp is incorrect.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(9));
EXPECT_FALSE(rv);
// The failed purge attempt should have updated usage time to the correct
// value.
EXPECT_EQ(Time::FromSecondsSinceUnixEpoch(8), memory1.last_known_usage());
// Purge should now succeed.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(10));
EXPECT_TRUE(rv);
}
TEST(DiscardableSharedMemoryTest, MappedSize) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory;
bool rv = memory.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
EXPECT_LE(kDataSize, memory.mapped_size());
// Mapped size should be 0 after memory segment has been unmapped.
rv = memory.Unmap();
EXPECT_TRUE(rv);
EXPECT_EQ(0u, memory.mapped_size());
}
TEST(DiscardableSharedMemoryTest, Close) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory;
bool rv = memory.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
// Mapped size should be unchanged after memory segment has been closed.
memory.Close();
EXPECT_LE(kDataSize, memory.mapped_size());
// Memory is initially locked. Unlock it.
memory.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory.Unlock(0, 0);
// Lock and unlock memory.
DiscardableSharedMemory::LockResult lock_rv = memory.Lock(0, 0);
EXPECT_EQ(DiscardableSharedMemory::SUCCESS, lock_rv);
memory.SetNow(Time::FromSecondsSinceUnixEpoch(2));
memory.Unlock(0, 0);
}
TEST(DiscardableSharedMemoryTest, ZeroSize) {
TestDiscardableSharedMemory memory;
bool rv = memory.CreateAndMap(0);
ASSERT_TRUE(rv);
EXPECT_LE(0u, memory.mapped_size());
// Memory is initially locked. Unlock it.
memory.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory.Unlock(0, 0);
// Lock and unlock memory.
DiscardableSharedMemory::LockResult lock_rv = memory.Lock(0, 0);
EXPECT_NE(DiscardableSharedMemory::FAILED, lock_rv);
memory.SetNow(Time::FromSecondsSinceUnixEpoch(2));
memory.Unlock(0, 0);
}
// This test checks that zero-filled pages are returned after purging a segment
// when DISCARDABLE_SHARED_MEMORY_ZERO_FILL_ON_DEMAND_PAGES_AFTER_PURGE is
// defined and MADV_REMOVE is supported.
#if defined(DISCARDABLE_SHARED_MEMORY_ZERO_FILL_ON_DEMAND_PAGES_AFTER_PURGE)
TEST(DiscardableSharedMemoryTest, ZeroFilledPagesAfterPurge) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
UnsafeSharedMemoryRegion shared_region = memory1.DuplicateRegion();
ASSERT_TRUE(shared_region.IsValid());
TestDiscardableSharedMemory memory2(std::move(shared_region));
rv = memory2.Map(kDataSize);
ASSERT_TRUE(rv);
// Initialize all memory to '0xaa'.
memset(memory2.memory(), 0xaa, kDataSize);
// Unlock memory.
memory2.SetNow(Time::FromSecondsSinceUnixEpoch(1));
memory2.Unlock(0, 0);
EXPECT_FALSE(memory1.IsMemoryLocked());
// Memory is unlocked, but our usage timestamp is incorrect.
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(2));
EXPECT_FALSE(rv);
rv = memory1.Purge(Time::FromSecondsSinceUnixEpoch(3));
EXPECT_TRUE(rv);
// Check that reading memory after it has been purged is returning
// zero-filled pages.
uint8_t expected_data[kDataSize] = {};
EXPECT_EQ(memcmp(memory2.memory(), expected_data, kDataSize), 0);
}
#endif
#if BUILDFLAG(ENABLE_BASE_TRACING)
TEST(DiscardableSharedMemoryTest, TracingOwnershipEdges) {
const uint32_t kDataSize = 1024;
TestDiscardableSharedMemory memory1;
bool rv = memory1.CreateAndMap(kDataSize);
ASSERT_TRUE(rv);
base::trace_event::MemoryDumpArgs args = {
base::trace_event::MemoryDumpLevelOfDetail::kDetailed};
trace_event::ProcessMemoryDump pmd(args);
trace_event::MemoryAllocatorDump* client_dump =
pmd.CreateAllocatorDump("discardable_manager/map1");
const bool is_owned = false;
memory1.CreateSharedMemoryOwnershipEdge(client_dump, &pmd, is_owned);
const auto* shm_dump = pmd.GetAllocatorDump(
SharedMemoryTracker::GetDumpNameForTracing(memory1.mapped_id()));
EXPECT_TRUE(shm_dump);
EXPECT_EQ(shm_dump->GetSizeInternal(), client_dump->GetSizeInternal());
const auto edges = pmd.allocator_dumps_edges();
EXPECT_EQ(2u, edges.size());
EXPECT_NE(edges.end(), edges.find(shm_dump->guid()));
EXPECT_NE(edges.end(), edges.find(client_dump->guid()));
// TODO(ssid): test for weak global dump once the
// CreateWeakSharedMemoryOwnershipEdge() is fixed, crbug.com/661257.
}
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
} // namespace base
|