1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_glib.h"
#include <glib.h>
#include <math.h>
#include "build/build_config.h"
#include <algorithm>
#include <vector>
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_pump_type.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/synchronization/waitable_event.h"
#include "base/synchronization/waitable_event_watcher.h"
#include "base/task/current_thread.h"
#include "base/task/single_thread_task_executor.h"
#include "base/task/single_thread_task_runner.h"
#include "base/test/task_environment.h"
#include "base/test/trace_event_analyzer.h"
#include "base/threading/thread.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
// This class injects dummy "events" into the GLib loop. When "handled" these
// events can run tasks. This is intended to mock gtk events (the corresponding
// GLib source runs at the same priority).
class EventInjector {
public:
EventInjector() : processed_events_(0) {
source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
source_->injector = this;
g_source_attach(source_, nullptr);
g_source_set_can_recurse(source_, TRUE);
}
EventInjector(const EventInjector&) = delete;
EventInjector& operator=(const EventInjector&) = delete;
~EventInjector() {
g_source_destroy(source_);
g_source_unref(source_.ExtractAsDangling());
}
int HandlePrepare() {
// If the queue is empty, block.
if (events_.empty())
return -1;
TimeDelta delta = events_[0].time - Time::NowFromSystemTime();
return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
}
bool HandleCheck() {
if (events_.empty())
return false;
return events_[0].time <= Time::NowFromSystemTime();
}
void HandleDispatch() {
if (events_.empty())
return;
Event event = std::move(events_[0]);
events_.erase(events_.begin());
++processed_events_;
if (!event.callback.is_null())
std::move(event.callback).Run();
else if (!event.task.is_null())
std::move(event.task).Run();
}
// Adds an event to the queue. When "handled", executes |callback|.
// delay_ms is relative to the last event if any, or to Now() otherwise.
void AddEvent(int delay_ms, OnceClosure callback) {
AddEventHelper(delay_ms, std::move(callback), OnceClosure());
}
void AddDummyEvent(int delay_ms) {
AddEventHelper(delay_ms, OnceClosure(), OnceClosure());
}
void AddEventAsTask(int delay_ms, OnceClosure task) {
AddEventHelper(delay_ms, OnceClosure(), std::move(task));
}
void Reset() {
processed_events_ = 0;
events_.clear();
}
int processed_events() const { return processed_events_; }
private:
struct Event {
Time time;
OnceClosure callback;
OnceClosure task;
};
struct Source : public GSource {
raw_ptr<EventInjector> injector;
};
void AddEventHelper(int delay_ms, OnceClosure callback, OnceClosure task) {
Time last_time;
if (!events_.empty())
last_time = (events_.end()-1)->time;
else
last_time = Time::NowFromSystemTime();
Time future = last_time + Milliseconds(delay_ms);
EventInjector::Event event = {future, std::move(callback), std::move(task)};
events_.push_back(std::move(event));
}
static gboolean Prepare(GSource* source, gint* timeout_ms) {
*timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
return FALSE;
}
static gboolean Check(GSource* source) {
return static_cast<Source*>(source)->injector->HandleCheck();
}
static gboolean Dispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<Source*>(source)->injector->HandleDispatch();
return TRUE;
}
static void Finalize(GSource* source) {
// Since the Source object memory is managed by glib, Source implicit
// destructor is never called, and thus Source's raw_ptr never release its
// internal reference on the pump pointer. This leads to adding pressure to
// the BackupRefPtr quarantine.
static_cast<Source*>(source)->injector = nullptr;
}
raw_ptr<Source> source_;
std::vector<Event> events_;
int processed_events_;
static GSourceFuncs SourceFuncs;
};
GSourceFuncs EventInjector::SourceFuncs = {
EventInjector::Prepare,
EventInjector::Check,
EventInjector::Dispatch,
EventInjector::Finalize,
};
void IncrementInt(int *value) {
++*value;
}
// Checks how many events have been processed by the injector.
void ExpectProcessedEvents(EventInjector* injector, int count) {
EXPECT_EQ(injector->processed_events(), count);
}
// Posts a task on the current message loop.
void PostMessageLoopTask(const Location& from_here, OnceClosure task) {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(from_here,
std::move(task));
}
// Test fixture.
class MessagePumpGLibTest : public testing::Test {
public:
MessagePumpGLibTest() = default;
MessagePumpGLibTest(const MessagePumpGLibTest&) = delete;
MessagePumpGLibTest& operator=(const MessagePumpGLibTest&) = delete;
EventInjector* injector() { return &injector_; }
private:
test::SingleThreadTaskEnvironment task_environment_{
test::SingleThreadTaskEnvironment::MainThreadType::UI};
EventInjector injector_;
};
} // namespace
TEST_F(MessagePumpGLibTest, TestQuit) {
// Checks that Quit works and that the basic infrastructure is working.
// Quit from a task
RunLoop().RunUntilIdle();
EXPECT_EQ(0, injector()->processed_events());
injector()->Reset();
// Quit from an event
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
// Checks that tasks posted by events are executed before the next event if
// the posted task queue is empty.
// MessageLoop doesn't make strong guarantees that it is the case, but the
// current implementation ensures it and the tests below rely on it.
// If changes cause this test to fail, it is reasonable to change it, but
// TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
// changed accordingly, otherwise they can become flaky.
injector()->AddEventAsTask(0, DoNothing());
OnceClosure check_task =
BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2);
OnceClosure posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(0, std::move(posted_task));
injector()->AddEventAsTask(0, DoNothing());
{
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
}
EXPECT_EQ(4, injector()->processed_events());
injector()->Reset();
injector()->AddEventAsTask(0, DoNothing());
check_task = BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2);
posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(0, std::move(posted_task));
injector()->AddEventAsTask(10, DoNothing());
{
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
}
EXPECT_EQ(4, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
int task_count = 0;
// Tests that we process tasks while waiting for new events.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
{
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0,
run_loop.QuitClosure()));
run_loop.Run();
}
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
// Tests that we process delayed tasks while waiting for new events.
injector()->Reset();
task_count = 0;
for (int i = 0; i < 10; ++i) {
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(10 * i));
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
// This relies on the fact that delayed tasks are executed in delay order.
// That is verified in message_loop_unittest.cc.
{
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE,
BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0,
run_loop.QuitClosure()),
Milliseconds(150));
run_loop.Run();
}
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
// Tests that we process events while waiting for work.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
injector()->AddDummyEvent(0);
}
// After all the events have been processed, post a task that will check that
// the events have been processed (note: the task executes after the event
// that posted it has been handled, so we expect 11 at that point).
OnceClosure check_task =
BindOnce(&ExpectProcessedEvents, Unretained(injector()), 11);
OnceClosure posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(10, std::move(posted_task));
// And then quit (relies on the condition tested by TestEventTaskInterleave).
RunLoop run_loop;
injector()->AddEvent(10, run_loop.QuitClosure());
run_loop.Run();
EXPECT_EQ(12, injector()->processed_events());
}
namespace {
// This class is a helper for the concurrent events / posted tasks test below.
// It will quit the main loop once enough tasks and events have been processed,
// while making sure there is always work to do and events in the queue.
class ConcurrentHelper : public RefCounted<ConcurrentHelper> {
public:
ConcurrentHelper(EventInjector* injector, OnceClosure done_closure)
: injector_(injector),
done_closure_(std::move(done_closure)),
event_count_(kStartingEventCount),
task_count_(kStartingTaskCount) {}
void FromTask() {
if (task_count_ > 0) {
--task_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
std::move(done_closure_).Run();
} else {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, this));
}
}
void FromEvent() {
if (event_count_ > 0) {
--event_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
std::move(done_closure_).Run();
} else {
injector_->AddEventAsTask(0,
BindOnce(&ConcurrentHelper::FromEvent, this));
}
}
int event_count() const { return event_count_; }
int task_count() const { return task_count_; }
private:
friend class RefCounted<ConcurrentHelper>;
~ConcurrentHelper() {}
static const int kStartingEventCount = 20;
static const int kStartingTaskCount = 20;
raw_ptr<EventInjector> injector_;
OnceClosure done_closure_;
int event_count_;
int task_count_;
};
} // namespace
TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
// Tests that posted tasks don't starve events, nor the opposite.
// We use the helper class above. We keep both event and posted task queues
// full, the helper verifies that both tasks and events get processed.
// If that is not the case, either event_count_ or task_count_ will not get
// to 0, and MessageLoop::QuitWhenIdle() will never be called.
RunLoop run_loop;
scoped_refptr<ConcurrentHelper> helper =
new ConcurrentHelper(injector(), run_loop.QuitClosure());
// Add 2 events to the queue to make sure it is always full (when we remove
// the event before processing it).
injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper));
injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper));
// Similarly post 2 tasks.
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper));
run_loop.Run();
EXPECT_EQ(0, helper->event_count());
EXPECT_EQ(0, helper->task_count());
}
namespace {
void AddEventsAndDrainGLib(EventInjector* injector, OnceClosure on_drained) {
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Then add an event that will quit the main loop.
injector->AddEvent(0, std::move(on_drained));
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE, DoNothing());
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE, DoNothing());
// Drain the events
while (g_main_context_pending(nullptr)) {
g_main_context_iteration(nullptr, FALSE);
}
}
} // namespace
TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
// Tests that draining events using GLib works.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&AddEventsAndDrainGLib, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
EXPECT_EQ(3, injector()->processed_events());
}
namespace {
// Helper class that lets us run the GLib message loop.
class GLibLoopRunner : public RefCounted<GLibLoopRunner> {
public:
GLibLoopRunner() : quit_(false) { }
void RunGLib() {
while (!quit_) {
g_main_context_iteration(nullptr, TRUE);
}
}
void RunLoop() {
while (!quit_) {
g_main_context_iteration(nullptr, TRUE);
}
}
void Quit() {
quit_ = true;
}
void Reset() {
quit_ = false;
}
private:
friend class RefCounted<GLibLoopRunner>;
~GLibLoopRunner() {}
bool quit_;
};
void TestGLibLoopInternal(EventInjector* injector, OnceClosure done) {
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
// Delayed events
injector->AddDummyEvent(10);
injector->AddDummyEvent(10);
// Delayed work
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(30));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
// Run a nested, straight GLib message loop.
{
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunGLib();
}
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
std::move(done).Run();
}
void TestGtkLoopInternal(EventInjector* injector, OnceClosure done) {
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
// Delayed events
injector->AddDummyEvent(10);
injector->AddDummyEvent(10);
// Delayed work
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(30));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
// Run a nested, straight Gtk message loop.
{
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunLoop();
}
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
std::move(done).Run();
}
} // namespace
TEST_F(MessagePumpGLibTest, TestGLibLoop) {
// Tests that events and posted tasks are correctly executed if the message
// loop is not run by MessageLoop::Run() but by a straight GLib loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&TestGLibLoopInternal, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
}
TEST_F(MessagePumpGLibTest, TestGtkLoop) {
// Tests that events and posted tasks are correctly executed if the message
// loop is not run by MessageLoop::Run() but by a straight Gtk loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&TestGtkLoopInternal, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
}
namespace {
class NestedEventAnalyzer {
public:
NestedEventAnalyzer() {
trace_analyzer::Start(TRACE_DISABLED_BY_DEFAULT("base"));
}
size_t CountEvents() {
std::unique_ptr<trace_analyzer::TraceAnalyzer> analyzer =
trace_analyzer::Stop();
trace_analyzer::TraceEventVector events;
return analyzer->FindEvents(trace_analyzer::Query::EventName() ==
trace_analyzer::Query::String("Nested"),
&events);
}
};
} // namespace
TEST_F(MessagePumpGLibTest, TestNativeNestedLoopWithoutDoWork) {
// Tests that nesting is triggered correctly if a message loop is run
// from a native event (gtk event) outside of a work item (not in a posted
// task).
RunLoop run_loop;
NestedEventAnalyzer analyzer;
base::CurrentThread::Get()->EnableMessagePumpTimeKeeperMetrics(
"GlibMainLoopTest");
scoped_refptr<GLibLoopRunner> runner = base::MakeRefCounted<GLibLoopRunner>();
injector()->AddEvent(
0,
BindOnce(
[](EventInjector* injector, scoped_refptr<GLibLoopRunner> runner,
OnceClosure done) {
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunLoop();
},
Unretained(injector()), runner, run_loop.QuitClosure()));
injector()->AddDummyEvent(0);
injector()->AddDummyEvent(0);
injector()->AddDummyEvent(0);
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, run_loop.QuitClosure(), Milliseconds(40));
run_loop.Run();
// It would be expected that there be one single event, but it seems like this
// is counting the Begin/End of the Nested trace event. Each of the two events
// found are of duration 0 with distinct timestamps. It has also been
// confirmed that nesting occurs only once.
CHECK_EQ(analyzer.CountEvents(), 2ul);
}
// Tests for WatchFileDescriptor API
class MessagePumpGLibFdWatchTest : public testing::Test {
protected:
MessagePumpGLibFdWatchTest()
: io_thread_("MessagePumpGLibFdWatchTestIOThread") {}
~MessagePumpGLibFdWatchTest() override = default;
void SetUp() override {
Thread::Options options(MessagePumpType::IO, 0);
ASSERT_TRUE(io_thread_.StartWithOptions(std::move(options)));
int ret = pipe(pipefds_);
ASSERT_EQ(0, ret);
}
void TearDown() override {
// Wait for the IO thread to exit before closing FDs which may have been
// passed to it.
io_thread_.Stop();
if (IGNORE_EINTR(close(pipefds_[0])) < 0)
PLOG(ERROR) << "close";
if (IGNORE_EINTR(close(pipefds_[1])) < 0)
PLOG(ERROR) << "close";
}
void WaitUntilIoThreadStarted() {
ASSERT_TRUE(io_thread_.WaitUntilThreadStarted());
}
scoped_refptr<SingleThreadTaskRunner> io_runner() const {
return io_thread_.task_runner();
}
void SimulateEvent(MessagePumpGlib* pump,
MessagePumpGlib::FdWatchController* controller) {
controller->poll_fd_->revents = G_IO_IN | G_IO_OUT;
pump->HandleFdWatchDispatch(controller);
}
int pipefds_[2];
static constexpr char null_byte_ = 0;
private:
Thread io_thread_;
};
namespace {
class BaseWatcher : public MessagePumpGlib::FdWatcher {
public:
explicit BaseWatcher(MessagePumpGlib::FdWatchController* controller)
: controller_(controller) {
DCHECK(controller_);
}
~BaseWatcher() override = default;
// base:MessagePumpGlib::FdWatcher interface
void OnFileCanReadWithoutBlocking(int /* fd */) override { NOTREACHED(); }
void OnFileCanWriteWithoutBlocking(int /* fd */) override { NOTREACHED(); }
protected:
raw_ptr<MessagePumpGlib::FdWatchController> controller_;
};
class DeleteWatcher : public BaseWatcher {
public:
explicit DeleteWatcher(
std::unique_ptr<MessagePumpGlib::FdWatchController> controller)
: BaseWatcher(controller.get()),
owned_controller_(std::move(controller)) {}
~DeleteWatcher() override { DCHECK(!controller_); }
bool HasController() const { return !!controller_; }
void OnFileCanWriteWithoutBlocking(int /* fd */) override {
ClearController();
}
protected:
void ClearController() {
DCHECK(owned_controller_);
controller_ = nullptr;
owned_controller_.reset();
}
private:
std::unique_ptr<MessagePumpGlib::FdWatchController> owned_controller_;
};
class StopWatcher : public BaseWatcher {
public:
explicit StopWatcher(MessagePumpGlib::FdWatchController* controller)
: BaseWatcher(controller) {}
~StopWatcher() override = default;
void OnFileCanWriteWithoutBlocking(int /* fd */) override {
controller_->StopWatchingFileDescriptor();
}
};
void QuitMessageLoopAndStart(OnceClosure quit_closure) {
std::move(quit_closure).Run();
RunLoop runloop(RunLoop::Type::kNestableTasksAllowed);
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE,
runloop.QuitClosure());
runloop.Run();
}
class NestedPumpWatcher : public MessagePumpGlib::FdWatcher {
public:
NestedPumpWatcher() = default;
~NestedPumpWatcher() override = default;
void OnFileCanReadWithoutBlocking(int /* fd */) override {
RunLoop runloop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&QuitMessageLoopAndStart, runloop.QuitClosure()));
runloop.Run();
}
void OnFileCanWriteWithoutBlocking(int /* fd */) override {}
};
class QuitWatcher : public DeleteWatcher {
public:
QuitWatcher(std::unique_ptr<MessagePumpGlib::FdWatchController> controller,
base::OnceClosure quit_closure)
: DeleteWatcher(std::move(controller)),
quit_closure_(std::move(quit_closure)) {}
void OnFileCanReadWithoutBlocking(int fd) override {
ClearController();
if (quit_closure_)
std::move(quit_closure_).Run();
}
private:
base::OnceClosure quit_closure_;
};
void WriteFDWrapper(const int fd,
const char* buf,
int size,
WaitableEvent* event) {
ASSERT_TRUE(WriteFileDescriptor(fd, StringPiece(buf, size)));
}
} // namespace
// Tests that MessagePumpGlib::FdWatcher::OnFileCanReadWithoutBlocking is not
// called for a READ_WRITE event, and that the controller is destroyed in
// OnFileCanWriteWithoutBlocking callback.
TEST_F(MessagePumpGLibFdWatchTest, DeleteWatcher) {
auto pump = std::make_unique<MessagePumpGlib>();
auto controller_ptr =
std::make_unique<MessagePumpGlib::FdWatchController>(FROM_HERE);
auto* controller = controller_ptr.get();
DeleteWatcher watcher(std::move(controller_ptr));
pump->WatchFileDescriptor(pipefds_[1], false,
MessagePumpGlib::WATCH_READ_WRITE, controller,
&watcher);
SimulateEvent(pump.get(), controller);
EXPECT_FALSE(watcher.HasController());
}
// Tests that MessagePumpGlib::FdWatcher::OnFileCanReadWithoutBlocking is not
// called for a READ_WRITE event, when the watcher calls
// StopWatchingFileDescriptor in OnFileCanWriteWithoutBlocking callback.
TEST_F(MessagePumpGLibFdWatchTest, StopWatcher) {
std::unique_ptr<MessagePumpGlib> pump(new MessagePumpGlib);
MessagePumpGlib::FdWatchController controller(FROM_HERE);
StopWatcher watcher(&controller);
pump->WatchFileDescriptor(pipefds_[1], false,
MessagePumpGlib::WATCH_READ_WRITE, &controller,
&watcher);
SimulateEvent(pump.get(), &controller);
}
// Tests that FdWatcher works properly with nested loops.
TEST_F(MessagePumpGLibFdWatchTest, NestedPumpWatcher) {
test::SingleThreadTaskEnvironment task_environment(
test::SingleThreadTaskEnvironment::MainThreadType::UI);
std::unique_ptr<MessagePumpGlib> pump(new MessagePumpGlib);
NestedPumpWatcher watcher;
MessagePumpGlib::FdWatchController controller(FROM_HERE);
pump->WatchFileDescriptor(pipefds_[1], false, MessagePumpGlib::WATCH_READ,
&controller, &watcher);
SimulateEvent(pump.get(), &controller);
}
// Tests that MessagePumpGlib quits immediately when it is quit from
// libevent's event_base_loop().
TEST_F(MessagePumpGLibFdWatchTest, QuitWatcher) {
MessagePumpGlib* pump = new MessagePumpGlib();
SingleThreadTaskExecutor executor(WrapUnique(pump));
RunLoop run_loop;
auto owned_controller =
std::make_unique<MessagePumpGlib::FdWatchController>(FROM_HERE);
MessagePumpGlib::FdWatchController* controller = owned_controller.get();
QuitWatcher delegate(std::move(owned_controller), run_loop.QuitClosure());
pump->WatchFileDescriptor(pipefds_[0], false, MessagePumpGlib::WATCH_READ,
controller, &delegate);
// Make the IO thread wait for |event| before writing to pipefds[1].
WaitableEvent event;
auto watcher = std::make_unique<WaitableEventWatcher>();
WaitableEventWatcher::EventCallback write_fd_task =
BindOnce(&WriteFDWrapper, pipefds_[1], &null_byte_, 1);
io_runner()->PostTask(
FROM_HERE, BindOnce(IgnoreResult(&WaitableEventWatcher::StartWatching),
Unretained(watcher.get()), &event,
std::move(write_fd_task), io_runner()));
// Queue |event| to signal on |CurrentUIThread::Get()|.
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&WaitableEvent::Signal, Unretained(&event)));
// Now run the MessageLoop.
run_loop.Run();
// StartWatching can move |watcher| to IO thread. Release on IO thread.
io_runner()->PostTask(FROM_HERE, BindOnce(&WaitableEventWatcher::StopWatching,
Owned(std::move(watcher))));
}
} // namespace base
|