1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
#include <windows.h>
#include <atomic>
#include <memory>
#include "base/base_export.h"
#include "base/compiler_specific.h"
#include "base/location.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/message_loop/message_pump.h"
#include "base/observer_list.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "base/win/message_window.h"
#include "base/win/scoped_handle.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
// MessagePumpWin serves as the base for specialized versions of the MessagePump
// for Windows. It provides basic functionality like handling of observers and
// controlling the lifetime of the message pump.
class BASE_EXPORT MessagePumpWin : public MessagePump {
public:
MessagePumpWin();
~MessagePumpWin() override;
// MessagePump methods:
void Run(Delegate* delegate) override;
void Quit() override;
protected:
struct RunState {
explicit RunState(Delegate* delegate_in) : delegate(delegate_in) {}
const raw_ptr<Delegate> delegate;
// Used to flag that the current Run() invocation should return ASAP.
bool should_quit = false;
// Set to true if this Run() is nested within another Run().
bool is_nested = false;
};
virtual void DoRunLoop() = 0;
// True iff:
// * MessagePumpForUI: there's a kMsgDoWork message pending in the Windows
// Message queue. i.e. when:
// a. The pump is about to wakeup from idle.
// b. The pump is about to enter a nested native loop and a
// ScopedAllowApplicationTasksInNativeNestedLoop was instantiated to
// allow application tasks to execute in that nested loop
// (ScopedAllowApplicationTasksInNativeNestedLoop invokes
// ScheduleWork()).
// c. While in a native (nested) loop : HandleWorkMessage() =>
// ProcessPumpReplacementMessage() invokes ScheduleWork() before
// processing a native message to guarantee this pump will get another
// time slice if it goes into native Windows code and enters a native
// nested loop. This is different from (b.) because we're not yet
// processing an application task at the current run level and
// therefore are expected to keep pumping application tasks without
// necessitating a ScopedAllowApplicationTasksInNativeNestedLoop.
//
// * MessagePumpforIO: there's a dummy IO completion item with |this| as an
// lpCompletionKey in the queue which is about to wakeup
// WaitForIOCompletion(). MessagePumpForIO doesn't support nesting so
// this is simpler than MessagePumpForUI.
std::atomic_bool work_scheduled_{false};
// State for the current invocation of Run(). null if not running.
// This field is not a raw_ptr<> because it was filtered by the rewriter for:
// #addr-of
RAW_PTR_EXCLUSION RunState* run_state_ = nullptr;
THREAD_CHECKER(bound_thread_);
};
//-----------------------------------------------------------------------------
// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_UI.
//
// MessagePumpForUI implements a "traditional" Windows message pump. It contains
// a nearly infinite loop that peeks out messages, and then dispatches them.
// Intermixed with those peeks are callouts to DoWork. When there are no
// events to be serviced, this pump goes into a wait state. In most cases, this
// message pump handles all processing.
//
// However, when a task, or windows event, invokes on the stack a native dialog
// box or such, that window typically provides a bare bones (native?) message
// pump. That bare-bones message pump generally supports little more than a
// peek of the Windows message queue, followed by a dispatch of the peeked
// message. MessageLoop extends that bare-bones message pump to also service
// Tasks, at the cost of some complexity.
//
// The basic structure of the extension (referred to as a sub-pump) is that a
// special message, kMsgHaveWork, is repeatedly injected into the Windows
// Message queue. Each time the kMsgHaveWork message is peeked, checks are made
// for an extended set of events, including the availability of Tasks to run.
//
// After running a task, the special message kMsgHaveWork is again posted to the
// Windows Message queue, ensuring a future time slice for processing a future
// event. To prevent flooding the Windows Message queue, care is taken to be
// sure that at most one kMsgHaveWork message is EVER pending in the Window's
// Message queue.
//
// There are a few additional complexities in this system where, when there are
// no Tasks to run, this otherwise infinite stream of messages which drives the
// sub-pump is halted. The pump is automatically re-started when Tasks are
// queued.
//
// A second complexity is that the presence of this stream of posted tasks may
// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
// Such paint and timer events always give priority to a posted message, such as
// kMsgHaveWork messages. As a result, care is taken to do some peeking in
// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork is
// peeked, and before a replacement kMsgHaveWork is posted).
//
// NOTE: Although it may seem odd that messages are used to start and stop this
// flow (as opposed to signaling objects, etc.), it should be understood that
// the native message pump will *only* respond to messages. As a result, it is
// an excellent choice. It is also helpful that the starter messages that are
// placed in the queue when new task arrive also awakens DoRunLoop.
//
class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
public:
MessagePumpForUI();
~MessagePumpForUI() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) override;
// An observer interface to give the scheduler an opportunity to log
// information about MSGs before and after they are dispatched.
class BASE_EXPORT Observer {
public:
virtual void WillDispatchMSG(const MSG& msg) = 0;
virtual void DidDispatchMSG(const MSG& msg) = 0;
};
void AddObserver(Observer* observer);
void RemoveObserver(Observer* obseerver);
private:
bool MessageCallback(UINT message,
WPARAM wparam,
LPARAM lparam,
LRESULT* result);
void DoRunLoop() override;
NOINLINE NOT_TAIL_CALLED void WaitForWork(
Delegate::NextWorkInfo next_work_info);
void HandleWorkMessage();
void HandleTimerMessage();
void ScheduleNativeTimer(Delegate::NextWorkInfo next_work_info);
void KillNativeTimer();
bool ProcessNextWindowsMessage();
bool ProcessMessageHelper(const MSG& msg);
bool ProcessPumpReplacementMessage();
base::win::MessageWindow message_window_;
// Non-nullopt if there's currently a native timer installed. If so, it
// indicates when the timer is set to fire and can be used to avoid setting
// redundant timers.
absl::optional<TimeTicks> installed_native_timer_;
// This will become true when a native loop takes our kMsgHaveWork out of the
// system queue. It will be reset to false whenever DoRunLoop regains control.
// Used to decide whether ScheduleDelayedWork() should start a native timer.
bool in_native_loop_ = false;
ObserverList<Observer>::Unchecked observers_;
};
//-----------------------------------------------------------------------------
// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
// deal with Windows mesagges, and instead has a Run loop based on Completion
// Ports so it is better suited for IO operations.
//
class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
public:
struct BASE_EXPORT IOContext {
IOContext();
OVERLAPPED overlapped;
};
// Clients interested in receiving OS notifications when asynchronous IO
// operations complete should implement this interface and register themselves
// with the message pump.
//
// Typical use #1:
// class MyFile : public IOHandler {
// MyFile() : IOHandler(FROM_HERE) {
// ...
// message_pump->RegisterIOHandler(file_, this);
// }
// // Plus some code to make sure that this destructor is not called
// // while there are pending IO operations.
// ~MyFile() {
// }
// virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
// DWORD error) {
// ...
// delete context;
// }
// void DoSomeIo() {
// ...
// IOContext* context = new IOContext;
// ReadFile(file_, buffer, num_bytes, &read, &context);
// }
// HANDLE file_;
// };
//
// Typical use #2:
// Same as the previous example, except that in order to deal with the
// requirement stated for the destructor, the class calls WaitForIOCompletion
// from the destructor to block until all IO finishes.
// ~MyFile() {
// while(pending_)
// message_pump->WaitForIOCompletion(INFINITE, this);
// }
//
class BASE_EXPORT IOHandler {
public:
explicit IOHandler(const Location& from_here);
virtual ~IOHandler();
IOHandler(const IOHandler&) = delete;
IOHandler& operator=(const IOHandler&) = delete;
// This will be called once the pending IO operation associated with
// |context| completes. |error| is the Win32 error code of the IO operation
// (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
// on error.
virtual void OnIOCompleted(IOContext* context,
DWORD bytes_transfered,
DWORD error) = 0;
const Location& io_handler_location() { return io_handler_location_; }
private:
const Location io_handler_location_;
};
MessagePumpForIO();
~MessagePumpForIO() override;
// MessagePump methods:
void ScheduleWork() override;
void ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) override;
// Register the handler to be used when asynchronous IO for the given file
// completes. The registration persists as long as |file_handle| is valid, so
// |handler| must be valid as long as there is pending IO for the given file.
HRESULT RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
// Register the handler to be used to process job events. The registration
// persists as long as the job object is live, so |handler| must be valid
// until the job object is destroyed. Returns true if the registration
// succeeded, and false otherwise.
bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
private:
struct IOItem {
raw_ptr<IOHandler> handler;
raw_ptr<IOContext> context;
DWORD bytes_transfered;
DWORD error;
};
void DoRunLoop() override;
NOINLINE NOT_TAIL_CALLED void WaitForWork(
Delegate::NextWorkInfo next_work_info);
bool GetIOItem(DWORD timeout, IOItem* item);
bool ProcessInternalIOItem(const IOItem& item);
// Waits for the next IO completion for up to |timeout| milliseconds.
// Return true if any IO operation completed, and false if the timeout
// expired. If the completion port received any messages, the associated
// handlers will have been invoked before returning from this code.
bool WaitForIOCompletion(DWORD timeout);
// The completion port associated with this thread.
win::ScopedHandle port_;
};
} // namespace base
#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
|