1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sampling_heap_profiler/lock_free_address_hash_set.h"
#include <stdlib.h>
#include <atomic>
#include <cinttypes>
#include <memory>
#include "base/allocator/partition_allocator/src/partition_alloc/shim/allocator_shim.h"
#include "base/debug/alias.h"
#include "base/memory/raw_ptr.h"
#include "base/threading/simple_thread.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
class LockFreeAddressHashSetTest : public ::testing::Test {
public:
static bool IsSubset(const LockFreeAddressHashSet& superset,
const LockFreeAddressHashSet& subset) {
for (const std::atomic<LockFreeAddressHashSet::Node*>& bucket :
subset.buckets_) {
for (LockFreeAddressHashSet::Node* node =
bucket.load(std::memory_order_acquire);
node; node = node->next) {
void* key = node->key.load(std::memory_order_relaxed);
if (key && !superset.Contains(key))
return false;
}
}
return true;
}
static bool Equals(const LockFreeAddressHashSet& set1,
const LockFreeAddressHashSet& set2) {
return IsSubset(set1, set2) && IsSubset(set2, set1);
}
static size_t BucketSize(const LockFreeAddressHashSet& set, size_t bucket) {
size_t count = 0;
LockFreeAddressHashSet::Node* node =
set.buckets_[bucket].load(std::memory_order_acquire);
for (; node; node = node->next)
++count;
return count;
}
};
namespace {
TEST_F(LockFreeAddressHashSetTest, EmptySet) {
LockFreeAddressHashSet set(8);
EXPECT_EQ(size_t(0), set.size());
EXPECT_EQ(size_t(8), set.buckets_count());
EXPECT_EQ(0., set.load_factor());
EXPECT_FALSE(set.Contains(&set));
}
TEST_F(LockFreeAddressHashSetTest, BasicOperations) {
LockFreeAddressHashSet set(8);
for (size_t i = 1; i <= 100; ++i) {
void* ptr = reinterpret_cast<void*>(i);
set.Insert(ptr);
EXPECT_EQ(i, set.size());
EXPECT_TRUE(set.Contains(ptr));
}
size_t size = 100;
EXPECT_EQ(size, set.size());
EXPECT_EQ(size_t(8), set.buckets_count());
EXPECT_EQ(size / 8., set.load_factor());
for (size_t i = 99; i >= 3; i -= 3) {
void* ptr = reinterpret_cast<void*>(i);
set.Remove(ptr);
EXPECT_EQ(--size, set.size());
EXPECT_FALSE(set.Contains(ptr));
}
// Removed every 3rd value (33 total) from the set, 67 have left.
EXPECT_EQ(size_t(67), set.size());
for (size_t i = 1; i <= 100; ++i) {
void* ptr = reinterpret_cast<void*>(i);
EXPECT_EQ(i % 3 != 0, set.Contains(ptr));
}
}
TEST_F(LockFreeAddressHashSetTest, Copy) {
LockFreeAddressHashSet set(16);
for (size_t i = 1000; i <= 16000; i += 1000) {
void* ptr = reinterpret_cast<void*>(i);
set.Insert(ptr);
}
LockFreeAddressHashSet set2(4);
LockFreeAddressHashSet set3(64);
set2.Copy(set);
set3.Copy(set);
EXPECT_TRUE(Equals(set, set2));
EXPECT_TRUE(Equals(set, set3));
EXPECT_TRUE(Equals(set2, set3));
set.Insert(reinterpret_cast<void*>(42));
EXPECT_FALSE(Equals(set, set2));
EXPECT_FALSE(Equals(set, set3));
EXPECT_TRUE(Equals(set2, set3));
EXPECT_TRUE(IsSubset(set, set2));
EXPECT_FALSE(IsSubset(set2, set));
}
class WriterThread : public SimpleThread {
public:
WriterThread(LockFreeAddressHashSet* set, std::atomic_bool* cancel)
: SimpleThread("ReaderThread"), set_(set), cancel_(cancel) {}
void Run() override {
for (size_t value = 42; !cancel_->load(std::memory_order_acquire);
++value) {
void* ptr = reinterpret_cast<void*>(value);
set_->Insert(ptr);
EXPECT_TRUE(set_->Contains(ptr));
set_->Remove(ptr);
EXPECT_FALSE(set_->Contains(ptr));
}
// Leave a key for reader to test.
set_->Insert(reinterpret_cast<void*>(0x1337));
}
private:
raw_ptr<LockFreeAddressHashSet> set_;
raw_ptr<std::atomic_bool> cancel_;
};
TEST_F(LockFreeAddressHashSetTest, ConcurrentAccess) {
// The purpose of this test is to make sure adding/removing keys concurrently
// does not disrupt the state of other keys.
LockFreeAddressHashSet set(16);
for (size_t i = 1; i <= 20; ++i)
set.Insert(reinterpret_cast<void*>(i));
// Remove some items to test empty nodes.
for (size_t i = 16; i <= 20; ++i)
set.Remove(reinterpret_cast<void*>(i));
std::atomic_bool cancel(false);
auto thread = std::make_unique<WriterThread>(&set, &cancel);
thread->Start();
for (size_t k = 0; k < 100000; ++k) {
for (size_t i = 1; i <= 30; ++i) {
EXPECT_EQ(i < 16, set.Contains(reinterpret_cast<void*>(i)));
}
}
cancel.store(true, std::memory_order_release);
thread->Join();
EXPECT_TRUE(set.Contains(reinterpret_cast<void*>(0x1337)));
EXPECT_FALSE(set.Contains(reinterpret_cast<void*>(0xbadf00d)));
}
TEST_F(LockFreeAddressHashSetTest, BucketsUsage) {
// Test the uniformity of buckets usage.
size_t count = 10000;
LockFreeAddressHashSet set(16);
for (size_t i = 0; i < count; ++i)
set.Insert(reinterpret_cast<void*>(0x10000 + 0x10 * i));
size_t average_per_bucket = count / set.buckets_count();
for (size_t i = 0; i < set.buckets_count(); ++i) {
size_t usage = BucketSize(set, i);
EXPECT_LT(average_per_bucket * 95 / 100, usage);
EXPECT_GT(average_per_bucket * 105 / 100, usage);
}
}
} // namespace
} // namespace base
|