1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_STRINGS_STRING_NUMBER_CONVERSIONS_INTERNAL_H_
#define BASE_STRINGS_STRING_NUMBER_CONVERSIONS_INTERNAL_H_
#include <errno.h>
#include <stdlib.h>
#include <limits>
#include "base/check.h"
#include "base/logging.h"
#include "base/numerics/safe_math.h"
#include "base/strings/string_util.h"
#include "base/third_party/double_conversion/double-conversion/double-conversion.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
namespace internal {
template <typename STR, typename INT>
static STR IntToStringT(INT value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const size_t kOutputBufSize =
3 * sizeof(INT) + std::numeric_limits<INT>::is_signed;
// Create the string in a temporary buffer, write it back to front, and
// then return the substr of what we ended up using.
using CHR = typename STR::value_type;
CHR outbuf[kOutputBufSize];
// The ValueOrDie call below can never fail, because UnsignedAbs is valid
// for all valid inputs.
std::make_unsigned_t<INT> res =
CheckedNumeric<INT>(value).UnsignedAbs().ValueOrDie();
CHR* end = outbuf + kOutputBufSize;
CHR* i = end;
do {
--i;
DCHECK(i != outbuf);
*i = static_cast<CHR>((res % 10) + '0');
res /= 10;
} while (res != 0);
if (IsValueNegative(value)) {
--i;
DCHECK(i != outbuf);
*i = static_cast<CHR>('-');
}
return STR(i, end);
}
// Utility to convert a character to a digit in a given base
template <int BASE, typename CHAR>
absl::optional<uint8_t> CharToDigit(CHAR c) {
static_assert(1 <= BASE && BASE <= 36, "BASE needs to be in [1, 36]");
if (c >= '0' && c < '0' + std::min(BASE, 10))
return static_cast<uint8_t>(c - '0');
if (c >= 'a' && c < 'a' + BASE - 10)
return static_cast<uint8_t>(c - 'a' + 10);
if (c >= 'A' && c < 'A' + BASE - 10)
return static_cast<uint8_t>(c - 'A' + 10);
return absl::nullopt;
}
template <typename Number, int kBase>
class StringToNumberParser {
public:
struct Result {
Number value = 0;
bool valid = false;
};
static constexpr Number kMin = std::numeric_limits<Number>::min();
static constexpr Number kMax = std::numeric_limits<Number>::max();
// Sign provides:
// - a static function, CheckBounds, that determines whether the next digit
// causes an overflow/underflow
// - a static function, Increment, that appends the next digit appropriately
// according to the sign of the number being parsed.
template <typename Sign>
class Base {
public:
template <typename Iter>
static Result Invoke(Iter begin, Iter end) {
Number value = 0;
if (begin == end) {
return {value, false};
}
// Note: no performance difference was found when using template
// specialization to remove this check in bases other than 16
if (kBase == 16 && end - begin > 2 && *begin == '0' &&
(*(begin + 1) == 'x' || *(begin + 1) == 'X')) {
begin += 2;
}
for (Iter current = begin; current != end; ++current) {
absl::optional<uint8_t> new_digit = CharToDigit<kBase>(*current);
if (!new_digit) {
return {value, false};
}
if (current != begin) {
Result result = Sign::CheckBounds(value, *new_digit);
if (!result.valid)
return result;
value *= kBase;
}
value = Sign::Increment(value, *new_digit);
}
return {value, true};
}
};
class Positive : public Base<Positive> {
public:
static Result CheckBounds(Number value, uint8_t new_digit) {
if (value > static_cast<Number>(kMax / kBase) ||
(value == static_cast<Number>(kMax / kBase) &&
new_digit > kMax % kBase)) {
return {kMax, false};
}
return {value, true};
}
static Number Increment(Number lhs, uint8_t rhs) { return lhs + rhs; }
};
class Negative : public Base<Negative> {
public:
static Result CheckBounds(Number value, uint8_t new_digit) {
if (value < kMin / kBase ||
(value == kMin / kBase && new_digit > 0 - kMin % kBase)) {
return {kMin, false};
}
return {value, true};
}
static Number Increment(Number lhs, uint8_t rhs) { return lhs - rhs; }
};
};
template <typename Number, int kBase, typename CharT>
auto StringToNumber(BasicStringPiece<CharT> input) {
using Parser = StringToNumberParser<Number, kBase>;
using Result = typename Parser::Result;
bool has_leading_whitespace = false;
auto begin = input.begin();
auto end = input.end();
while (begin != end && IsAsciiWhitespace(*begin)) {
has_leading_whitespace = true;
++begin;
}
if (begin != end && *begin == '-') {
if (!std::numeric_limits<Number>::is_signed) {
return Result{0, false};
}
Result result = Parser::Negative::Invoke(begin + 1, end);
result.valid &= !has_leading_whitespace;
return result;
}
if (begin != end && *begin == '+') {
++begin;
}
Result result = Parser::Positive::Invoke(begin, end);
result.valid &= !has_leading_whitespace;
return result;
}
template <typename T, typename VALUE, typename CharT = typename T::value_type>
bool StringToIntImpl(T input, VALUE& output) {
auto result = StringToNumber<VALUE, 10, CharT>(input);
output = result.value;
return result.valid;
}
template <typename T, typename VALUE, typename CharT = typename T::value_type>
bool HexStringToIntImpl(T input, VALUE& output) {
auto result = StringToNumber<VALUE, 16, CharT>(input);
output = result.value;
return result.valid;
}
static const double_conversion::DoubleToStringConverter*
GetDoubleToStringConverter() {
static double_conversion::DoubleToStringConverter converter(
double_conversion::DoubleToStringConverter::EMIT_POSITIVE_EXPONENT_SIGN,
nullptr, nullptr, 'e', -6, 12, 0, 0);
return &converter;
}
// Converts a given (data, size) pair to a desired string type. For
// performance reasons, this dispatches to a different constructor if the
// passed-in data matches the string's value_type.
template <typename StringT>
StringT ToString(const typename StringT::value_type* data, size_t size) {
return StringT(data, size);
}
template <typename StringT, typename CharT>
StringT ToString(const CharT* data, size_t size) {
return StringT(data, data + size);
}
template <typename StringT>
StringT DoubleToStringT(double value) {
char buffer[32];
double_conversion::StringBuilder builder(buffer, sizeof(buffer));
GetDoubleToStringConverter()->ToShortest(value, &builder);
return ToString<StringT>(buffer, static_cast<size_t>(builder.position()));
}
template <typename STRING, typename CHAR>
bool StringToDoubleImpl(STRING input, const CHAR* data, double& output) {
static double_conversion::StringToDoubleConverter converter(
double_conversion::StringToDoubleConverter::ALLOW_LEADING_SPACES |
double_conversion::StringToDoubleConverter::ALLOW_TRAILING_JUNK,
0.0, 0, nullptr, nullptr);
int processed_characters_count;
output = converter.StringToDouble(data, checked_cast<int>(input.size()),
&processed_characters_count);
// Cases to return false:
// - If the input string is empty, there was nothing to parse.
// - If the value saturated to HUGE_VAL.
// - If the entire string was not processed, there are either characters
// remaining in the string after a parsed number, or the string does not
// begin with a parseable number.
// - If the first character is a space, there was leading whitespace. Note
// that this checks using IsWhitespace(), which behaves differently for
// wide and narrow characters -- that is intentional and matches the
// behavior of the double_conversion library's whitespace-skipping
// algorithm.
return !input.empty() && output != HUGE_VAL && output != -HUGE_VAL &&
static_cast<size_t>(processed_characters_count) == input.size() &&
!IsWhitespace(input[0]);
}
template <typename Char, typename OutIter>
static bool HexStringToByteContainer(StringPiece input, OutIter output) {
size_t count = input.size();
if (count == 0 || (count % 2) != 0)
return false;
for (uintptr_t i = 0; i < count / 2; ++i) {
// most significant 4 bits
absl::optional<uint8_t> msb = CharToDigit<16>(input[i * 2]);
// least significant 4 bits
absl::optional<uint8_t> lsb = CharToDigit<16>(input[i * 2 + 1]);
if (!msb || !lsb) {
return false;
}
*(output++) = static_cast<Char>((*msb << 4) | *lsb);
}
return true;
}
} // namespace internal
} // namespace base
#endif // BASE_STRINGS_STRING_NUMBER_CONVERSIONS_INTERNAL_H_
|