1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/system/sys_info.h"
#include <stddef.h>
#include <stdint.h>
#include <windows.h>
#include <algorithm>
#include <bit>
#include <limits>
#include <type_traits>
#include <vector>
#include "base/check.h"
#include "base/files/file_path.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/process/process_metrics.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/sys_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/win/registry.h"
#include "base/win/windows_version.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace {
// Returns the power efficiency levels of physical cores or empty vector on
// failure. The BYTE value of the element is the relative efficiency rank among
// all physical cores, where 0 is the most efficient, 1 is the second most
// efficient, and so on.
std::vector<BYTE> GetCoreEfficiencyClasses() {
const DWORD kReservedSize =
sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) * 64;
absl::InlinedVector<BYTE, kReservedSize> buffer;
buffer.resize(kReservedSize);
DWORD byte_length = kReservedSize;
if (!GetLogicalProcessorInformationEx(
RelationProcessorCore,
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(
buffer.data()),
&byte_length)) {
DPCHECK(GetLastError() == ERROR_INSUFFICIENT_BUFFER);
buffer.resize(byte_length);
if (!GetLogicalProcessorInformationEx(
RelationProcessorCore,
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(
buffer.data()),
&byte_length)) {
return {};
}
}
std::vector<BYTE> efficiency_classes;
BYTE* byte_ptr = buffer.data();
while (byte_ptr < buffer.data() + byte_length) {
const auto* structure_ptr =
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*>(byte_ptr);
DCHECK_EQ(structure_ptr->Relationship, RelationProcessorCore);
DCHECK_LE(&structure_ptr->Processor.EfficiencyClass +
sizeof(structure_ptr->Processor.EfficiencyClass),
buffer.data() + byte_length);
efficiency_classes.push_back(structure_ptr->Processor.EfficiencyClass);
DCHECK_GE(
structure_ptr->Size,
offsetof(std::remove_pointer_t<decltype(structure_ptr)>, Processor) +
sizeof(structure_ptr->Processor));
byte_ptr = byte_ptr + structure_ptr->Size;
}
return efficiency_classes;
}
// Returns the physical cores to logical processor mapping masks by using the
// Windows API GetLogicalProcessorInformation(), or an empty vector on failure.
// When succeeded, the vector would be of same size to the number of physical
// cores, while each element is the bitmask of the logical processors that the
// physical core has.
std::vector<uint64_t> GetCoreProcessorMasks() {
const DWORD kReservedSize = 64;
absl::InlinedVector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION, kReservedSize>
buffer;
buffer.resize(kReservedSize);
DWORD byte_length = sizeof(buffer[0]) * kReservedSize;
const BOOL result =
GetLogicalProcessorInformation(buffer.data(), &byte_length);
DWORD element_count = byte_length / sizeof(buffer[0]);
DCHECK_EQ(byte_length % sizeof(buffer[0]), 0u);
if (!result) {
DPCHECK(GetLastError() == ERROR_INSUFFICIENT_BUFFER);
buffer.resize(element_count);
if (!GetLogicalProcessorInformation(buffer.data(), &byte_length)) {
return {};
}
}
std::vector<uint64_t> processor_masks;
for (DWORD i = 0; i < element_count; i++) {
if (buffer[i].Relationship == RelationProcessorCore) {
processor_masks.push_back(buffer[i].ProcessorMask);
}
}
return processor_masks;
}
uint64_t AmountOfMemory(DWORDLONG MEMORYSTATUSEX::*memory_field) {
MEMORYSTATUSEX memory_info;
memory_info.dwLength = sizeof(memory_info);
if (!GlobalMemoryStatusEx(&memory_info)) {
NOTREACHED();
return 0;
}
return memory_info.*memory_field;
}
bool GetDiskSpaceInfo(const base::FilePath& path,
int64_t* available_bytes,
int64_t* total_bytes) {
ULARGE_INTEGER available;
ULARGE_INTEGER total;
ULARGE_INTEGER free;
if (!GetDiskFreeSpaceExW(path.value().c_str(), &available, &total, &free))
return false;
if (available_bytes) {
*available_bytes = static_cast<int64_t>(available.QuadPart);
if (*available_bytes < 0)
*available_bytes = std::numeric_limits<int64_t>::max();
}
if (total_bytes) {
*total_bytes = static_cast<int64_t>(total.QuadPart);
if (*total_bytes < 0)
*total_bytes = std::numeric_limits<int64_t>::max();
}
return true;
}
} // namespace
namespace base {
// static
int SysInfo::NumberOfProcessors() {
return win::OSInfo::GetInstance()->processors();
}
// static
int SysInfo::NumberOfEfficientProcessorsImpl() {
std::vector<BYTE> efficiency_classes = GetCoreEfficiencyClasses();
if (efficiency_classes.empty())
return 0;
auto [min_efficiency_class_it, max_efficiency_class_it] =
std::minmax_element(efficiency_classes.begin(), efficiency_classes.end());
if (*min_efficiency_class_it == *max_efficiency_class_it)
return 0;
std::vector<uint64_t> processor_masks = GetCoreProcessorMasks();
if (processor_masks.empty())
return 0;
DCHECK_EQ(efficiency_classes.size(), processor_masks.size());
int num_of_efficient_processors = 0;
for (size_t i = 0; i < efficiency_classes.size(); i++) {
if (efficiency_classes[i] == *min_efficiency_class_it) {
num_of_efficient_processors += std::popcount(processor_masks[i]);
}
}
return num_of_efficient_processors;
}
// static
uint64_t SysInfo::AmountOfPhysicalMemoryImpl() {
return AmountOfMemory(&MEMORYSTATUSEX::ullTotalPhys);
}
// static
uint64_t SysInfo::AmountOfAvailablePhysicalMemoryImpl() {
SystemMemoryInfoKB info;
if (!GetSystemMemoryInfo(&info))
return 0;
return checked_cast<uint64_t>(info.avail_phys) * 1024;
}
// static
uint64_t SysInfo::AmountOfVirtualMemory() {
return AmountOfMemory(&MEMORYSTATUSEX::ullTotalVirtual);
}
// static
int64_t SysInfo::AmountOfFreeDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t available;
if (!GetDiskSpaceInfo(path, &available, nullptr))
return -1;
return available;
}
// static
int64_t SysInfo::AmountOfTotalDiskSpace(const FilePath& path) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int64_t total;
if (!GetDiskSpaceInfo(path, nullptr, &total))
return -1;
return total;
}
std::string SysInfo::OperatingSystemName() {
return "Windows NT";
}
// static
std::string SysInfo::OperatingSystemVersion() {
win::OSInfo* os_info = win::OSInfo::GetInstance();
win::OSInfo::VersionNumber version_number = os_info->version_number();
std::string version(StringPrintf("%d.%d.%d", version_number.major,
version_number.minor, version_number.build));
win::OSInfo::ServicePack service_pack = os_info->service_pack();
if (service_pack.major != 0) {
version += StringPrintf(" SP%d", service_pack.major);
if (service_pack.minor != 0)
version += StringPrintf(".%d", service_pack.minor);
}
return version;
}
// TODO: Implement OperatingSystemVersionComplete, which would include
// patchlevel/service pack number.
// See chrome/browser/feedback/feedback_util.h, FeedbackUtil::SetOSVersion.
// static
std::string SysInfo::OperatingSystemArchitecture() {
win::OSInfo::WindowsArchitecture arch = win::OSInfo::GetArchitecture();
switch (arch) {
case win::OSInfo::X86_ARCHITECTURE:
return "x86";
case win::OSInfo::X64_ARCHITECTURE:
return "x86_64";
case win::OSInfo::IA64_ARCHITECTURE:
return "ia64";
case win::OSInfo::ARM64_ARCHITECTURE:
return "arm64";
default:
return "";
}
}
// static
std::string SysInfo::CPUModelName() {
return win::OSInfo::GetInstance()->processor_model_name();
}
// static
size_t SysInfo::VMAllocationGranularity() {
return win::OSInfo::GetInstance()->allocation_granularity();
}
// static
void SysInfo::OperatingSystemVersionNumbers(int32_t* major_version,
int32_t* minor_version,
int32_t* bugfix_version) {
win::OSInfo* os_info = win::OSInfo::GetInstance();
*major_version = static_cast<int32_t>(os_info->version_number().major);
*minor_version = static_cast<int32_t>(os_info->version_number().minor);
*bugfix_version = 0;
}
// static
std::string ReadHardwareInfoFromRegistry(const wchar_t* reg_value_name) {
// On some systems or VMs, the system information and some of the below
// locations may be missing info. Attempt to find the info from the below
// registry keys in the order provided.
static const wchar_t* const kSystemInfoRegKeyPaths[] = {
L"HARDWARE\\DESCRIPTION\\System\\BIOS",
L"SYSTEM\\CurrentControlSet\\Control\\SystemInformation",
L"SYSTEM\\HardwareConfig\\Current",
};
std::wstring value;
for (const wchar_t* system_info_reg_key_path : kSystemInfoRegKeyPaths) {
base::win::RegKey system_information_key;
if (system_information_key.Open(HKEY_LOCAL_MACHINE,
system_info_reg_key_path,
KEY_READ) == ERROR_SUCCESS) {
if ((system_information_key.ReadValue(reg_value_name, &value) ==
ERROR_SUCCESS) &&
!value.empty()) {
break;
}
}
}
return base::SysWideToUTF8(value);
}
// static
SysInfo::HardwareInfo SysInfo::GetHardwareInfoSync() {
HardwareInfo info = {ReadHardwareInfoFromRegistry(L"SystemManufacturer"),
SysInfo::HardwareModelName()};
return info;
}
// static
std::string SysInfo::HardwareModelName() {
return ReadHardwareInfoFromRegistry(L"SystemProductName");
}
} // namespace base
|