1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/trace_event/process_memory_dump.h"
#include <errno.h>
#include <memory>
#include <vector>
#include "base/bits.h"
#include "base/logging.h"
#include "base/memory/page_size.h"
#include "base/memory/ptr_util.h"
#include "base/memory/shared_memory_tracker.h"
#include "base/process/process_metrics.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_infra_background_allowlist.h"
#include "base/trace_event/trace_event_impl.h"
#include "base/trace_event/traced_value.h"
#include "base/unguessable_token.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/perfetto/protos/perfetto/trace/memory_graph.pbzero.h"
#include "third_party/perfetto/protos/perfetto/trace/trace_packet.pbzero.h"
#if BUILDFLAG(IS_IOS)
#include <mach/vm_page_size.h>
#endif
#if BUILDFLAG(IS_POSIX)
#include <sys/mman.h>
#endif
#if BUILDFLAG(IS_WIN)
#include <windows.h> // Must be in front of other Windows header files
#include <Psapi.h>
#endif
#if BUILDFLAG(IS_FUCHSIA)
#include <tuple>
#include "base/notreached.h"
#endif
using ProcessSnapshot =
::perfetto::protos::pbzero::MemoryTrackerSnapshot_ProcessSnapshot;
namespace base {
namespace trace_event {
namespace {
const char kEdgeTypeOwnership[] = "ownership";
std::string GetSharedGlobalAllocatorDumpName(
const MemoryAllocatorDumpGuid& guid) {
return "global/" + guid.ToString();
}
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
size_t GetSystemPageCount(size_t mapped_size, size_t page_size) {
return (mapped_size + page_size - 1) / page_size;
}
#endif
UnguessableToken GetTokenForCurrentProcess() {
static UnguessableToken instance = UnguessableToken::Create();
return instance;
}
} // namespace
// static
bool ProcessMemoryDump::is_black_hole_non_fatal_for_testing_ = false;
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
// static
size_t ProcessMemoryDump::GetSystemPageSize() {
#if BUILDFLAG(IS_IOS)
// On iOS, getpagesize() returns the user page sizes, but for allocating
// arrays for mincore(), kernel page sizes is needed. Use vm_kernel_page_size
// as recommended by Apple, https://forums.developer.apple.com/thread/47532/.
// Refer to http://crbug.com/542671 and Apple rdar://23651782
return vm_kernel_page_size;
#else
return base::GetPageSize();
#endif // BUILDFLAG(IS_IOS)
}
// static
absl::optional<size_t> ProcessMemoryDump::CountResidentBytes(
void* start_address,
size_t mapped_size) {
const size_t page_size = GetSystemPageSize();
const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address);
DCHECK_EQ(0u, start_pointer % page_size);
size_t offset = 0;
size_t total_resident_pages = 0;
bool failure = false;
// An array as large as number of pages in memory segment needs to be passed
// to the query function. To avoid allocating a large array, the given block
// of memory is split into chunks of size |kMaxChunkSize|.
const size_t kMaxChunkSize = 8 * 1024 * 1024;
size_t max_vec_size =
GetSystemPageCount(std::min(mapped_size, kMaxChunkSize), page_size);
#if BUILDFLAG(IS_WIN)
std::unique_ptr<PSAPI_WORKING_SET_EX_INFORMATION[]> vec(
new PSAPI_WORKING_SET_EX_INFORMATION[max_vec_size]);
#elif BUILDFLAG(IS_APPLE)
std::unique_ptr<char[]> vec(new char[max_vec_size]);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
std::unique_ptr<unsigned char[]> vec(new unsigned char[max_vec_size]);
#endif
while (offset < mapped_size) {
uintptr_t chunk_start = (start_pointer + offset);
const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize);
const size_t page_count = GetSystemPageCount(chunk_size, page_size);
size_t resident_page_count = 0;
#if BUILDFLAG(IS_WIN)
for (size_t i = 0; i < page_count; i++) {
vec[i].VirtualAddress =
reinterpret_cast<void*>(chunk_start + i * page_size);
}
DWORD vec_size = static_cast<DWORD>(
page_count * sizeof(PSAPI_WORKING_SET_EX_INFORMATION));
failure = !QueryWorkingSetEx(GetCurrentProcess(), vec.get(), vec_size);
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i].VirtualAttributes.Valid;
#elif BUILDFLAG(IS_FUCHSIA)
// TODO(crbug.com/851760): Implement counting resident bytes.
// For now, log and avoid unused variable warnings.
NOTIMPLEMENTED_LOG_ONCE();
std::ignore = chunk_start;
std::ignore = page_count;
#elif BUILDFLAG(IS_APPLE)
// mincore in MAC does not fail with EAGAIN.
failure =
!!mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0;
#elif BUILDFLAG(IS_POSIX)
int error_counter = 0;
int result = 0;
// HANDLE_EINTR tries for 100 times. So following the same pattern.
do {
result =
#if BUILDFLAG(IS_AIX)
mincore(reinterpret_cast<char*>(chunk_start), chunk_size,
reinterpret_cast<char*>(vec.get()));
#else
mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
#endif
} while (result == -1 && errno == EAGAIN && error_counter++ < 100);
failure = !!result;
for (size_t i = 0; i < page_count; i++)
resident_page_count += vec[i] & 1;
#endif
if (failure)
break;
total_resident_pages += resident_page_count * page_size;
offset += kMaxChunkSize;
}
DCHECK(!failure);
if (failure) {
LOG(ERROR) << "CountResidentBytes failed. The resident size is invalid";
return absl::nullopt;
}
return total_resident_pages;
}
// static
absl::optional<size_t> ProcessMemoryDump::CountResidentBytesInSharedMemory(
void* start_address,
size_t mapped_size) {
// `MapAt()` performs some internal arithmetic to allow non-page-aligned
// offsets, but the memory accounting still expects to work with page-aligned
// allocations.
//
// TODO(dcheng): one peculiarity here is that the shmem implementation uses
// `base::SysInfo::VMAllocationGranularity()` while this file uses
// `GetSystemPageSize()`. It'd be nice not to have two names for the same
// thing...
uint8_t* aligned_start_address = base::bits::AlignDown(
static_cast<uint8_t*>(start_address), GetSystemPageSize());
size_t adjusted_size =
mapped_size + static_cast<size_t>(static_cast<uint8_t*>(start_address) -
aligned_start_address);
#if BUILDFLAG(IS_APPLE)
// On macOS and iOS, use mach_vm_region|vm_region_64 instead of mincore for
// performance (crbug.com/742042).
mach_vm_size_t dummy_size = 0;
mach_vm_address_t address =
reinterpret_cast<mach_vm_address_t>(aligned_start_address);
vm_region_top_info_data_t info;
MachVMRegionResult result =
GetTopInfo(mach_task_self(), &dummy_size, &address, &info);
if (result == MachVMRegionResult::Error) {
LOG(ERROR) << "CountResidentBytesInSharedMemory failed. The resident size "
"is invalid";
return absl::optional<size_t>();
}
size_t resident_pages =
info.private_pages_resident + info.shared_pages_resident;
// On macOS and iOS, measurements for private memory footprint overcount by
// faulted pages in anonymous shared memory. To discount for this, we touch
// all the resident pages in anonymous shared memory here, thus making them
// faulted as well. This relies on two assumptions:
//
// 1) Consumers use shared memory from front to back. Thus, if there are
// (N) resident pages, those pages represent the first N * PAGE_SIZE bytes in
// the shared memory region.
//
// 2) This logic is run shortly before the logic that calculates
// phys_footprint, thus ensuring that the discrepancy between faulted and
// resident pages is minimal.
//
// The performance penalty is expected to be small.
//
// * Most of the time, we expect the pages to already be resident and faulted,
// thus incurring a cache penalty read hit [since we read from each resident
// page].
//
// * Rarely, we expect the pages to be resident but not faulted, resulting in
// soft faults + cache penalty.
//
// * If assumption (1) is invalid, this will potentially fault some
// previously non-resident pages, thus increasing memory usage, without fixing
// the accounting.
//
// Sanity check in case the mapped size is less than the total size of the
// region.
size_t pages_to_fault =
std::min(resident_pages, (adjusted_size + PAGE_SIZE - 1) / PAGE_SIZE);
volatile uint8_t* base_address = const_cast<uint8_t*>(aligned_start_address);
for (size_t i = 0; i < pages_to_fault; ++i) {
// Reading from a volatile is a visible side-effect for the purposes of
// optimization. This guarantees that the optimizer will not kill this line.
base_address[i * PAGE_SIZE];
}
return resident_pages * PAGE_SIZE;
#else
return CountResidentBytes(aligned_start_address, adjusted_size);
#endif // BUILDFLAG(IS_MAC)
}
#endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED)
ProcessMemoryDump::ProcessMemoryDump(
const MemoryDumpArgs& dump_args)
: process_token_(GetTokenForCurrentProcess()),
dump_args_(dump_args) {}
ProcessMemoryDump::~ProcessMemoryDump() = default;
ProcessMemoryDump::ProcessMemoryDump(ProcessMemoryDump&& other) = default;
ProcessMemoryDump& ProcessMemoryDump::operator=(ProcessMemoryDump&& other) =
default;
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name) {
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
absolute_name, dump_args_.level_of_detail, GetDumpId(absolute_name)));
}
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
const std::string& absolute_name,
const MemoryAllocatorDumpGuid& guid) {
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
absolute_name, dump_args_.level_of_detail, guid));
}
MemoryAllocatorDump* ProcessMemoryDump::AddAllocatorDumpInternal(
std::unique_ptr<MemoryAllocatorDump> mad) {
// In background mode return the black hole dump, if invalid dump name is
// given.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::kBackground &&
!IsMemoryAllocatorDumpNameInAllowlist(mad->absolute_name())) {
return GetBlackHoleMad(mad->absolute_name());
}
auto insertion_result = allocator_dumps_.insert(
std::make_pair(mad->absolute_name(), std::move(mad)));
MemoryAllocatorDump* inserted_mad = insertion_result.first->second.get();
DCHECK(insertion_result.second) << "Duplicate name: "
<< inserted_mad->absolute_name();
return inserted_mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump(
const std::string& absolute_name) const {
auto it = allocator_dumps_.find(absolute_name);
if (it != allocator_dumps_.end())
return it->second.get();
return nullptr;
}
MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump(
const std::string& absolute_name) {
MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name);
return mad ? mad : CreateAllocatorDump(absolute_name);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
// A shared allocator dump can be shared within a process and the guid could
// have been created already.
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad && mad != black_hole_mad_.get()) {
// The weak flag is cleared because this method should create a non-weak
// dump.
mad->clear_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
return CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
}
MemoryAllocatorDump* ProcessMemoryDump::CreateWeakSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) {
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
if (mad && mad != black_hole_mad_.get())
return mad;
mad = CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
mad->set_flags(MemoryAllocatorDump::Flags::WEAK);
return mad;
}
MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump(
const MemoryAllocatorDumpGuid& guid) const {
return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid));
}
void ProcessMemoryDump::DumpHeapUsage(
const std::unordered_map<base::trace_event::AllocationContext,
base::trace_event::AllocationMetrics>&
metrics_by_context,
base::trace_event::TraceEventMemoryOverhead& overhead,
const char* allocator_name) {
std::string base_name = base::StringPrintf("tracing/heap_profiler_%s",
allocator_name);
overhead.DumpInto(base_name.c_str(), this);
}
void ProcessMemoryDump::SetAllocatorDumpsForSerialization(
std::vector<std::unique_ptr<MemoryAllocatorDump>> dumps) {
DCHECK(allocator_dumps_.empty());
for (std::unique_ptr<MemoryAllocatorDump>& dump : dumps)
AddAllocatorDumpInternal(std::move(dump));
}
std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>
ProcessMemoryDump::GetAllEdgesForSerialization() const {
std::vector<MemoryAllocatorDumpEdge> edges;
edges.reserve(allocator_dumps_edges_.size());
for (const auto& it : allocator_dumps_edges_)
edges.push_back(it.second);
return edges;
}
void ProcessMemoryDump::SetAllEdgesForSerialization(
const std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>& edges) {
DCHECK(allocator_dumps_edges_.empty());
for (const MemoryAllocatorDumpEdge& edge : edges) {
auto it_and_inserted = allocator_dumps_edges_.emplace(edge.source, edge);
DCHECK(it_and_inserted.second);
}
}
void ProcessMemoryDump::Clear() {
allocator_dumps_.clear();
allocator_dumps_edges_.clear();
}
void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) {
// Moves the ownership of all MemoryAllocatorDump(s) contained in |other|
// into this ProcessMemoryDump, checking for duplicates.
for (auto& it : other->allocator_dumps_)
AddAllocatorDumpInternal(std::move(it.second));
other->allocator_dumps_.clear();
// Move all the edges.
allocator_dumps_edges_.insert(other->allocator_dumps_edges_.begin(),
other->allocator_dumps_edges_.end());
other->allocator_dumps_edges_.clear();
}
void ProcessMemoryDump::SerializeAllocatorDumpsInto(TracedValue* value) const {
if (allocator_dumps_.size() > 0) {
value->BeginDictionary("allocators");
for (const auto& allocator_dump_it : allocator_dumps_)
allocator_dump_it.second->AsValueInto(value);
value->EndDictionary();
}
value->BeginArray("allocators_graph");
for (const auto& it : allocator_dumps_edges_) {
const MemoryAllocatorDumpEdge& edge = it.second;
value->BeginDictionary();
value->SetString("source", edge.source.ToString());
value->SetString("target", edge.target.ToString());
value->SetInteger("importance", edge.importance);
value->SetString("type", kEdgeTypeOwnership);
value->EndDictionary();
}
value->EndArray();
}
void ProcessMemoryDump::SerializeAllocatorDumpsInto(
perfetto::protos::pbzero::MemoryTrackerSnapshot* memory_snapshot,
const base::ProcessId pid) const {
ProcessSnapshot* process_snapshot =
memory_snapshot->add_process_memory_dumps();
process_snapshot->set_pid(static_cast<int>(pid));
for (const auto& allocator_dump_it : allocator_dumps_) {
ProcessSnapshot::MemoryNode* memory_node =
process_snapshot->add_allocator_dumps();
allocator_dump_it.second->AsProtoInto(memory_node);
}
for (const auto& it : allocator_dumps_edges_) {
const MemoryAllocatorDumpEdge& edge = it.second;
ProcessSnapshot::MemoryEdge* memory_edge =
process_snapshot->add_memory_edges();
memory_edge->set_source_id(edge.source.ToUint64());
memory_edge->set_target_id(edge.target.ToUint64());
// TODO(crbug.com/1333557): Fix .proto and remove this cast.
memory_edge->set_importance(static_cast<uint32_t>(edge.importance));
}
}
void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
// This will either override an existing edge or create a new one.
auto it = allocator_dumps_edges_.find(source);
int max_importance = importance;
if (it != allocator_dumps_edges_.end()) {
DCHECK_EQ(target.ToUint64(), it->second.target.ToUint64());
max_importance = std::max(importance, it->second.importance);
}
allocator_dumps_edges_[source] = {source, target, max_importance,
false /* overridable */};
}
void ProcessMemoryDump::AddOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target) {
AddOwnershipEdge(source, target, 0 /* importance */);
}
void ProcessMemoryDump::AddOverridableOwnershipEdge(
const MemoryAllocatorDumpGuid& source,
const MemoryAllocatorDumpGuid& target,
int importance) {
if (allocator_dumps_edges_.count(source) == 0) {
allocator_dumps_edges_[source] = {source, target, importance,
true /* overridable */};
} else {
// An edge between the source and target already exits. So, do nothing here
// since the new overridable edge is implicitly overridden by a strong edge
// which was created earlier.
DCHECK(!allocator_dumps_edges_[source].overridable);
}
}
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdge(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance) {
CreateSharedMemoryOwnershipEdgeInternal(client_local_dump_guid,
shared_memory_guid, importance,
false /*is_weak*/);
}
void ProcessMemoryDump::CreateWeakSharedMemoryOwnershipEdge(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance) {
CreateSharedMemoryOwnershipEdgeInternal(
client_local_dump_guid, shared_memory_guid, importance, true /*is_weak*/);
}
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdgeInternal(
const MemoryAllocatorDumpGuid& client_local_dump_guid,
const UnguessableToken& shared_memory_guid,
int importance,
bool is_weak) {
DCHECK(!shared_memory_guid.is_empty());
// New model where the global dumps created by SharedMemoryTracker are used
// for the clients.
// The guid of the local dump created by SharedMemoryTracker for the memory
// segment.
auto local_shm_guid =
GetDumpId(SharedMemoryTracker::GetDumpNameForTracing(shared_memory_guid));
// The dump guid of the global dump created by the tracker for the memory
// segment.
auto global_shm_guid =
SharedMemoryTracker::GetGlobalDumpIdForTracing(shared_memory_guid);
// Create an edge between local dump of the client and the local dump of the
// SharedMemoryTracker. Do not need to create the dumps here since the tracker
// would create them. The importance is also required here for the case of
// single process mode.
AddOwnershipEdge(client_local_dump_guid, local_shm_guid, importance);
// TODO(ssid): Handle the case of weak dumps here. This needs a new function
// GetOrCreaetGlobalDump() in PMD since we need to change the behavior of the
// created global dump.
// Create an edge that overrides the edge created by SharedMemoryTracker.
AddOwnershipEdge(local_shm_guid, global_shm_guid, importance);
}
void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source,
const std::string& target_node_name) {
// Do not create new dumps for suballocations in background mode.
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::kBackground) {
return;
}
std::string child_mad_name = target_node_name + "/__" + source.ToString();
MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name);
AddOwnershipEdge(source, target_child_mad->guid());
}
MemoryAllocatorDump* ProcessMemoryDump::GetBlackHoleMad(
const std::string& absolute_name) {
DCHECK(is_black_hole_non_fatal_for_testing_)
<< " unknown dump name " << absolute_name
<< " this likely means kAllocatorDumpNameAllowlist needs to be updated";
if (!black_hole_mad_) {
std::string name = "discarded";
black_hole_mad_ = std::make_unique<MemoryAllocatorDump>(
name, dump_args_.level_of_detail, GetDumpId(name));
}
return black_hole_mad_.get();
}
MemoryAllocatorDumpGuid ProcessMemoryDump::GetDumpId(
const std::string& absolute_name) {
return MemoryAllocatorDumpGuid(StringPrintf(
"%s:%s", process_token().ToString().c_str(), absolute_name.c_str()));
}
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator==(
const MemoryAllocatorDumpEdge& other) const {
return source == other.source && target == other.target &&
importance == other.importance && overridable == other.overridable;
}
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator!=(
const MemoryAllocatorDumpEdge& other) const {
return !(*this == other);
}
} // namespace trace_event
} // namespace base
|