1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_VALUES_H_
#define BASE_VALUES_H_
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <initializer_list>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/base_export.h"
#include "base/bit_cast.h"
#include "base/compiler_specific.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/cxx20_erase_vector.h"
#include "base/containers/flat_map.h"
#include "base/containers/span.h"
#include "base/memory/raw_ref.h"
#include "base/strings/string_piece.h"
#include "base/trace_event/base_tracing_forward.h"
#include "base/value_iterators.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/abseil-cpp/absl/types/variant.h"
namespace base {
// The `Value` class is a variant type can hold one of the following types:
// - null
// - bool
// - int
// - double
// - string (internally UTF8-encoded)
// - binary data (i.e. a blob)
// - dictionary of string keys to `Value`s
// - list of `Value`s
//
// With the exception of binary blobs, `Value` is intended to be the C++ version
// of data types that can be represented in JSON.
//
// Warning: blob support may be removed in the future.
//
// ## Usage
//
// Do not use `Value` if a more specific type would be more appropriate. For
// example, a function that only accepts dictionary values should have a
// `base::Value::Dict` parameter, not a `base::Value` parameter.
//
// Construction:
//
// `Value` is directly constructible from `bool`, `int`, `double`, binary blobs
// (`std::vector<uint8_t>`), `base::StringPiece`, `base::StringPiece16`,
// `Value::Dict`, and `Value::List`.
//
// Copying:
//
// `Value` does not support C++ copy semantics to make it harder to accidentally
// copy large values. Instead, use `Clone()` to manually create a deep copy.
//
// Reading:
//
// `GetBool()`, GetInt()`, et cetera `CHECK()` that the `Value` has the correct
// subtype before returning the contained value. `bool`, `int`, `double` are
// returned by value. Binary blobs, `std::string`, `Value::Dict`, `Value::List`
// are returned by reference.
//
// `GetIfBool()`, `GetIfInt()`, et cetera return `absl::nullopt`/`nullptr` if
// the `Value` does not have the correct subtype; otherwise, returns the value
// wrapped in an `absl::optional` (for `bool`, `int`, `double`) or by pointer
// (for binary blobs, `std::string`, `Value::Dict`, `Value::List`).
//
// Note: both `GetDouble()` and `GetIfDouble()` still return a non-null result
// when the subtype is `Value::Type::INT`. In that case, the stored value is
// coerced to a double before being returned.
//
// Assignment:
//
// It is not possible to directly assign `bool`, `int`, et cetera to a `Value`.
// Instead, wrap the underlying type in `Value` before assigning.
//
// ## Dictionaries and Lists
//
// `Value` provides the `Value::Dict` and `Value::List` container types for
// working with dictionaries and lists of values respectively, rather than
// exposing the underlying container types directly. This allows the types to
// provide convenient helpers for dictionaries and lists, as well as giving
// greater flexibility for changing implementation details in the future.
//
// Both container types support enough STL-isms to be usable in range-based for
// loops and generic operations such as those from <algorithm>.
//
// Dictionaries support:
// - `empty()`, `size()`, `begin()`, `end()`, `cbegin()`, `cend()`,
// `contains()`, `clear()`, `erase()`: Identical to the STL container
// equivalents, with additional safety checks, e.g. iterators will
// `CHECK()` if `end()` is dereferenced.
//
// - `Clone()`: Create a deep copy.
// - `Merge()`: Merge another dictionary into this dictionary.
// - `Find()`: Find a value by `StringPiece` key, returning nullptr if the key
// is not present.
// - `FindBool()`, `FindInt()`, ...: Similar to `Find()`, but ensures that the
// `Value` also has the correct subtype. Same return semantics as
// `GetIfBool()`, `GetIfInt()`, et cetera, returning `absl::nullopt` or
// `nullptr` if the key is not present or the value has the wrong subtype.
// - `Set()`: Associate a value with a `StringPiece` key. Accepts `Value` or any
// of the subtypes that `Value` can hold.
// - `Remove()`: Remove the key from this dictionary, if present.
// - `Extract()`: If the key is present in the dictionary, removes the key from
// the dictionary and transfers ownership of `Value` to the caller.
// Otherwise, returns `absl::nullopt`.
//
// Dictionaries also support an additional set of helper methods that operate on
// "paths": `FindByDottedPath()`, `SetByDottedPath()`, `RemoveByDottedPath()`,
// and `ExtractByDottedPath()`. Dotted paths are a convenience method of naming
// intermediate nested dictionaries, separating the components of the path using
// '.' characters. For example, finding a string path on a `Value::Dict` using
// the dotted path:
//
// "aaa.bbb.ccc"
//
// Will first look for a `Value::Type::DICT` associated with the key "aaa", then
// another `Value::Type::DICT` under the "aaa" dict associated with the
// key "bbb", and then a `Value::Type::STRING` under the "bbb" dict associated
// with the key "ccc".
//
// If a path only has one component (i.e. has no dots), please use the regular,
// non-path APIs.
//
// Lists support:
// - `empty()`, `size()`, `begin()`, `end()`, `cbegin()`, `cend()`,
// `rbegin()`, `rend()`, `front()`, `back()`, `reserve()`, `operator[]`,
// `clear()`, `erase()`: Identical to the STL container equivalents, with
// additional safety checks, e.g. `operator[]` will `CHECK()` if the index
// is out of range.
// - `Clone()`: Create a deep copy.
// - `Append()`: Append a value to the end of the list. Accepts `Value` or any
// of the subtypes that `Value` can hold.
// - `Insert()`: Insert a `Value` at a specified point in the list.
// - `EraseValue()`: Erases all matching `Value`s from the list.
// - `EraseIf()`: Erase all `Value`s matching an arbitrary predicate from the
// list.
class BASE_EXPORT GSL_OWNER Value {
public:
using BlobStorage = std::vector<uint8_t>;
class Dict;
class List;
enum class Type : unsigned char {
NONE = 0,
BOOLEAN,
INTEGER,
DOUBLE,
STRING,
BINARY,
DICT,
LIST,
// Note: Do not add more types. See the file-level comment above for why.
};
// Adaptors for converting from the old way to the new way and vice versa.
static Value FromUniquePtrValue(std::unique_ptr<Value> val);
static std::unique_ptr<Value> ToUniquePtrValue(Value val);
Value() noexcept;
Value(Value&&) noexcept;
Value& operator=(Value&&) noexcept;
// Deleted to prevent accidental copying.
Value(const Value&) = delete;
Value& operator=(const Value&) = delete;
// Creates a deep copy of this value.
Value Clone() const;
// Creates a `Value` of `type`. The data of the corresponding type will be
// default constructed.
explicit Value(Type type);
// Constructor for `Value::Type::BOOLEAN`.
explicit Value(bool value);
// Prevent pointers from implicitly converting to bool. Another way to write
// this would be to template the bool constructor and use SFINAE to only allow
// use if `std::is_same_v<T, bool>` is true, but this has surprising behavior
// with range-based for loops over a `std::vector<bool>` (which will
// unintuitively match the int overload instead).
//
// The `const` is load-bearing; otherwise, a `char*` argument would prefer the
// deleted overload due to requiring a qualification conversion.
template <typename T>
explicit Value(const T*) = delete;
// Constructor for `Value::Type::INT`.
explicit Value(int value);
// Constructor for `Value::Type::DOUBLE`.
explicit Value(double value);
// Constructors for `Value::Type::STRING`.
explicit Value(StringPiece value);
explicit Value(StringPiece16 value);
// `char*` and `char16_t*` are needed to provide a more specific overload than
// the deleted `const T*` overload above.
explicit Value(const char* value);
explicit Value(const char16_t* value);
// `std::string&&` allows for efficient move construction.
explicit Value(std::string&& value) noexcept;
// Constructors for `Value::Type::BINARY`.
explicit Value(const std::vector<char>& value);
explicit Value(base::span<const uint8_t> value);
explicit Value(BlobStorage&& value) noexcept;
// Constructor for `Value::Type::DICT`.
explicit Value(Dict&& value) noexcept;
// Constructor for `Value::Type::LIST`.
explicit Value(List&& value) noexcept;
~Value();
// Returns the name for a given `type`.
static const char* GetTypeName(Type type);
// Returns the type of the value stored by the current Value object.
Type type() const { return static_cast<Type>(data_.index()); }
// Returns true if the current object represents a given type.
bool is_none() const { return type() == Type::NONE; }
bool is_bool() const { return type() == Type::BOOLEAN; }
bool is_int() const { return type() == Type::INTEGER; }
bool is_double() const { return type() == Type::DOUBLE; }
bool is_string() const { return type() == Type::STRING; }
bool is_blob() const { return type() == Type::BINARY; }
bool is_dict() const { return type() == Type::DICT; }
bool is_list() const { return type() == Type::LIST; }
// Returns the stored data if the type matches, or `absl::nullopt`/`nullptr`
// otherwise. `bool`, `int`, and `double` are returned in a wrapped
// `absl::optional`; blobs, `Value::Dict`, and `Value::List` are returned by
// pointer.
absl::optional<bool> GetIfBool() const;
absl::optional<int> GetIfInt() const;
// Returns a non-null value for both `Value::Type::DOUBLE` and
// `Value::Type::INT`, converting the latter to a double.
absl::optional<double> GetIfDouble() const;
const std::string* GetIfString() const;
std::string* GetIfString();
const BlobStorage* GetIfBlob() const;
const Dict* GetIfDict() const;
Dict* GetIfDict();
const List* GetIfList() const;
List* GetIfList();
// Similar to the `GetIf...()` variants above, but fails with a `CHECK()` on a
// type mismatch. `bool`, `int`, and `double` are returned by value; blobs,
// `Value::Dict`, and `Value::List` are returned by reference.
bool GetBool() const;
int GetInt() const;
// Returns a value for both `Value::Type::DOUBLE` and `Value::Type::INT`,
// converting the latter to a double.
double GetDouble() const;
const std::string& GetString() const;
std::string& GetString();
const BlobStorage& GetBlob() const;
const Dict& GetDict() const;
Dict& GetDict();
const List& GetList() const;
List& GetList();
// Transfers ownership of the underlying value. Similarly to `Get...()`
// variants above, fails with a `CHECK()` on a type mismatch. After
// transferring the ownership `*this` is in a valid, but unspecified, state.
// Prefer over `std::move(value.Get...())` so clang-tidy can warn about
// potential use-after-move mistakes.
std::string TakeString() &&;
Dict TakeDict() &&;
List TakeList() &&;
// Represents a dictionary of string keys to Values.
class BASE_EXPORT GSL_OWNER Dict {
public:
using iterator = detail::dict_iterator;
using const_iterator = detail::const_dict_iterator;
Dict();
Dict(Dict&&) noexcept;
Dict& operator=(Dict&&) noexcept;
// Deleted to prevent accidental copying.
Dict(const Dict&) = delete;
Dict& operator=(const Dict&) = delete;
// Takes move_iterators iterators that return std::pair<std::string, Value>,
// and moves their values into a new Dict. Adding all entries at once
// results in a faster initial sort operation. Takes move iterators to avoid
// having to clone the input.
template <class IteratorType>
explicit Dict(std::move_iterator<IteratorType> first,
std::move_iterator<IteratorType> last) {
// Need to move into a vector first, since `storage_` currently uses
// unique_ptrs.
std::vector<std::pair<std::string, std::unique_ptr<Value>>> values;
for (auto current = first; current != last; ++current) {
// With move iterators, no need to call Clone(), but do need to move
// to a temporary first, as accessing either field individually will
// directly from the iterator will delete the other field.
auto value = *current;
values.emplace_back(std::move(value.first),
std::make_unique<Value>(std::move(value.second)));
}
storage_ =
flat_map<std::string, std::unique_ptr<Value>>(std::move(values));
}
~Dict();
// Returns true if there are no entries in this dictionary and false
// otherwise.
bool empty() const;
// Returns the number of entries in this dictionary.
size_t size() const;
// Returns an iterator to the first entry in this dictionary.
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
// Returns an iterator following the last entry in this dictionary. May not
// be dereferenced.
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Returns true if `key` is an entry in this dictionary.
bool contains(base::StringPiece key) const;
// Removes all entries from this dictionary.
REINITIALIZES_AFTER_MOVE void clear();
// Removes the entry referenced by `pos` in this dictionary and returns an
// iterator to the entry following the removed entry.
iterator erase(iterator pos);
iterator erase(const_iterator pos);
// Creates a deep copy of this dictionary.
Dict Clone() const;
// Merges the entries from `dict` into this dictionary. If an entry with the
// same key exists in this dictionary and `dict`:
// - if both entries are dictionaries, they will be recursively merged
// - otherwise, the already-existing entry in this dictionary will be
// overwritten with the entry from `dict`.
void Merge(Dict dict);
// Finds the entry corresponding to `key` in this dictionary. Returns
// nullptr if there is no such entry.
const Value* Find(StringPiece key) const;
Value* Find(StringPiece key);
// Similar to `Find()` above, but returns `absl::nullopt`/`nullptr` if the
// type of the entry does not match. `bool`, `int`, and `double` are
// returned in a wrapped `absl::optional`; blobs, `Value::Dict`, and
// `Value::List` are returned by pointer.
absl::optional<bool> FindBool(StringPiece key) const;
absl::optional<int> FindInt(StringPiece key) const;
// Returns a non-null value for both `Value::Type::DOUBLE` and
// `Value::Type::INT`, converting the latter to a double.
absl::optional<double> FindDouble(StringPiece key) const;
const std::string* FindString(StringPiece key) const;
std::string* FindString(StringPiece key);
const BlobStorage* FindBlob(StringPiece key) const;
const Dict* FindDict(StringPiece key) const;
Dict* FindDict(StringPiece key);
const List* FindList(StringPiece key) const;
List* FindList(StringPiece key);
// If there's a value of the specified type at `key` in this dictionary,
// returns it. Otherwise, creates an empty container of the specified type,
// inserts it at `key`, and returns it. If there's a value of some other
// type at `key`, will overwrite that entry.
Dict* EnsureDict(StringPiece key);
List* EnsureList(StringPiece key);
// Sets an entry with `key` and `value` in this dictionary, overwriting any
// existing entry with the same `key`. Returns a pointer to the set `value`.
Value* Set(StringPiece key, Value&& value) &;
Value* Set(StringPiece key, bool value) &;
template <typename T>
Value* Set(StringPiece, const T*) & = delete;
Value* Set(StringPiece key, int value) &;
Value* Set(StringPiece key, double value) &;
Value* Set(StringPiece key, StringPiece value) &;
Value* Set(StringPiece key, StringPiece16 value) &;
Value* Set(StringPiece key, const char* value) &;
Value* Set(StringPiece key, const char16_t* value) &;
Value* Set(StringPiece key, std::string&& value) &;
Value* Set(StringPiece key, BlobStorage&& value) &;
Value* Set(StringPiece key, Dict&& value) &;
Value* Set(StringPiece key, List&& value) &;
// Rvalue overrides of the `Set` methods, which allow you to construct
// a `Value::Dict` builder-style:
//
// Value::Dict result =
// Value::Dict()
// .Set("key-1", "first value")
// .Set("key-2", 2)
// .Set("key-3", true)
// .Set("nested-dictionary", Value::Dict()
// .Set("nested-key-1", "value")
// .Set("nested-key-2", true))
// .Set("nested-list", Value::List()
// .Append("nested-list-value")
// .Append(5)
// .Append(true));
//
// Each method returns a rvalue reference to `this`, so this is as efficient
// as (and less mistake-prone than) stand-alone calls to `Set`.
//
// The equivalent code without using these builder-style methods:
//
// Value::Dict bad_example;
// bad_example.Set("key-1", "first value")
// bad_example.Set("key-2", 2)
// bad_example.Set("key-3", true)
// Value::Dict nested_dictionary;
// nested_dictionary.Set("nested-key-1", "value");
// nested_dictionary.Set("nested-key-2", true);
// bad_example.Set("nested_dictionary", std::move(nested_dictionary));
// Value::List nested_list;
// nested_list.Append("nested-list-value");
// nested_list.Append(5);
// nested_list.Append(true);
// bad_example.Set("nested-list", std::move(nested_list));
//
Dict&& Set(StringPiece key, Value&& value) &&;
Dict&& Set(StringPiece key, bool value) &&;
template <typename T>
Dict&& Set(StringPiece, const T*) && = delete;
Dict&& Set(StringPiece key, int value) &&;
Dict&& Set(StringPiece key, double value) &&;
Dict&& Set(StringPiece key, StringPiece value) &&;
Dict&& Set(StringPiece key, StringPiece16 value) &&;
Dict&& Set(StringPiece key, const char* value) &&;
Dict&& Set(StringPiece key, const char16_t* value) &&;
Dict&& Set(StringPiece key, std::string&& value) &&;
Dict&& Set(StringPiece key, BlobStorage&& value) &&;
Dict&& Set(StringPiece key, Dict&& value) &&;
Dict&& Set(StringPiece key, List&& value) &&;
// Removes the entry corresponding to `key` from this dictionary. Returns
// true if an entry was removed or false otherwise.
bool Remove(StringPiece key);
// Similar to `Remove()`, but returns the value corresponding to the removed
// entry or `absl::nullopt` otherwise.
absl::optional<Value> Extract(StringPiece key);
// Equivalent to the above methods but operating on paths instead of keys.
// A path is shorthand syntax for referring to a key nested inside
// intermediate dictionaries, with components delimited by ".". Paths may
// not be empty.
//
// Prefer the non-path methods above when possible. Paths that have only one
// component (i.e. no dots in the path) should never use the path-based
// methods.
//
// Originally, the path-based APIs were the only way of specifying a key, so
// there are likely to be many legacy (and unnecessary) uses of the path
// APIs that do not actually require traversing nested dictionaries.
const Value* FindByDottedPath(StringPiece path) const;
Value* FindByDottedPath(StringPiece path);
absl::optional<bool> FindBoolByDottedPath(StringPiece path) const;
absl::optional<int> FindIntByDottedPath(StringPiece path) const;
// Returns a non-null value for both `Value::Type::DOUBLE` and
// `Value::Type::INT`, converting the latter to a double.
absl::optional<double> FindDoubleByDottedPath(StringPiece path) const;
const std::string* FindStringByDottedPath(StringPiece path) const;
std::string* FindStringByDottedPath(StringPiece path);
const BlobStorage* FindBlobByDottedPath(StringPiece path) const;
const Dict* FindDictByDottedPath(StringPiece path) const;
Dict* FindDictByDottedPath(StringPiece path);
const List* FindListByDottedPath(StringPiece path) const;
List* FindListByDottedPath(StringPiece path);
// Creates a new entry with a dictionary for any non-last component that is
// missing an entry while performing the path traversal. Will fail if any
// non-last component of the path refers to an already-existing entry that
// is not a dictionary. Returns `nullptr` on failure.
//
// Warning: repeatedly using this API to enter entries in the same nested
// dictionary is inefficient, so please do not write the following:
//
// bad_example.SetByDottedPath("a.nested.dictionary.field_1", 1);
// bad_example.SetByDottedPath("a.nested.dictionary.field_2", "value");
// bad_example.SetByDottedPath("a.nested.dictionary.field_3", 1);
//
Value* SetByDottedPath(StringPiece path, Value&& value) &;
Value* SetByDottedPath(StringPiece path, bool value) &;
template <typename T>
Value* SetByDottedPath(StringPiece, const T*) & = delete;
Value* SetByDottedPath(StringPiece path, int value) &;
Value* SetByDottedPath(StringPiece path, double value) &;
Value* SetByDottedPath(StringPiece path, StringPiece value) &;
Value* SetByDottedPath(StringPiece path, StringPiece16 value) &;
Value* SetByDottedPath(StringPiece path, const char* value) &;
Value* SetByDottedPath(StringPiece path, const char16_t* value) &;
Value* SetByDottedPath(StringPiece path, std::string&& value) &;
Value* SetByDottedPath(StringPiece path, BlobStorage&& value) &;
Value* SetByDottedPath(StringPiece path, Dict&& value) &;
Value* SetByDottedPath(StringPiece path, List&& value) &;
// Rvalue overrides of the `SetByDottedPath` methods, which allow you to
// construct a `Value::Dict` builder-style:
//
// Value::Dict result =
// Value::Dict()
// .SetByDottedPath("a.nested.dictionary.with.key-1", "first value")
// .Set("local-key-1", 2));
//
// Each method returns a rvalue reference to `this`, so this is as efficient
// as (and less mistake-prone than) stand-alone calls to `Set`.
//
// Warning: repeatedly using this API to enter entries in the same nested
// dictionary is inefficient, so do not write this:
//
// Value::Dict bad_example =
// Value::Dict()
// .SetByDottedPath("nested.dictionary.key-1", "first value")
// .SetByDottedPath("nested.dictionary.key-2", "second value")
// .SetByDottedPath("nested.dictionary.key-3", "third value");
//
// Instead, simply write this
//
// Value::Dict good_example =
// Value::Dict()
// .Set("nested",
// base::Value::Dict()
// .Set("dictionary",
// base::Value::Dict()
// .Set(key-1", "first value")
// .Set(key-2", "second value")
// .Set(key-3", "third value")));
//
//
Dict&& SetByDottedPath(StringPiece path, Value&& value) &&;
Dict&& SetByDottedPath(StringPiece path, bool value) &&;
template <typename T>
Dict&& SetByDottedPath(StringPiece, const T*) && = delete;
Dict&& SetByDottedPath(StringPiece path, int value) &&;
Dict&& SetByDottedPath(StringPiece path, double value) &&;
Dict&& SetByDottedPath(StringPiece path, StringPiece value) &&;
Dict&& SetByDottedPath(StringPiece path, StringPiece16 value) &&;
Dict&& SetByDottedPath(StringPiece path, const char* value) &&;
Dict&& SetByDottedPath(StringPiece path, const char16_t* value) &&;
Dict&& SetByDottedPath(StringPiece path, std::string&& value) &&;
Dict&& SetByDottedPath(StringPiece path, BlobStorage&& value) &&;
Dict&& SetByDottedPath(StringPiece path, Dict&& value) &&;
Dict&& SetByDottedPath(StringPiece path, List&& value) &&;
bool RemoveByDottedPath(StringPiece path);
absl::optional<Value> ExtractByDottedPath(StringPiece path);
// Estimates dynamic memory usage. Requires tracing support
// (enable_base_tracing gn flag), otherwise always returns 0. See
// base/trace_event/memory_usage_estimator.h for more info.
size_t EstimateMemoryUsage() const;
// Serializes to a string for logging and debug purposes.
std::string DebugString() const;
#if BUILDFLAG(ENABLE_BASE_TRACING)
// Write this object into a trace.
void WriteIntoTrace(perfetto::TracedValue) const;
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
private:
BASE_EXPORT friend bool operator==(const Dict& lhs, const Dict& rhs);
BASE_EXPORT friend bool operator!=(const Dict& lhs, const Dict& rhs);
BASE_EXPORT friend bool operator<(const Dict& lhs, const Dict& rhs);
BASE_EXPORT friend bool operator>(const Dict& lhs, const Dict& rhs);
BASE_EXPORT friend bool operator<=(const Dict& lhs, const Dict& rhs);
BASE_EXPORT friend bool operator>=(const Dict& lhs, const Dict& rhs);
explicit Dict(const flat_map<std::string, std::unique_ptr<Value>>& storage);
// TODO(dcheng): Replace with `flat_map<std::string, Value>` once no caller
// relies on stability of pointers anymore.
flat_map<std::string, std::unique_ptr<Value>> storage_;
};
// Represents a list of Values.
class BASE_EXPORT GSL_OWNER List {
public:
using iterator = CheckedContiguousIterator<Value>;
using const_iterator = CheckedContiguousConstIterator<Value>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using value_type = Value;
// Creates a list with the given capacity reserved.
// Correctly using this will greatly reduce the code size and improve
// performance when creating a list whose size is known up front.
static List with_capacity(size_t capacity);
List();
List(List&&) noexcept;
List& operator=(List&&) noexcept;
// Deleted to prevent accidental copying.
List(const List&) = delete;
List& operator=(const List&) = delete;
~List();
// Returns true if there are no values in this list and false otherwise.
bool empty() const;
// Returns the number of values in this list.
size_t size() const;
// Returns an iterator to the first value in this list.
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
// Returns an iterator following the last value in this list. May not be
// dereferenced.
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Returns a reverse iterator preceding the first value in this list. May
// not be dereferenced.
reverse_iterator rend();
const_reverse_iterator rend() const;
// Returns a reverse iterator to the last value in this list.
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
// Returns a reference to the first value in the container. Fails with
// `CHECK()` if the list is empty.
const Value& front() const;
Value& front();
// Returns a reference to the last value in the container. Fails with
// `CHECK()` if the list is empty.
const Value& back() const;
Value& back();
// Increase the capacity of the backing container, but does not change
// the size. Assume all existing iterators will be invalidated.
void reserve(size_t capacity);
// Resizes the list.
// If `new_size` is greater than current size, the extra elements in the
// back will be destroyed.
// If `new_size` is less than current size, new default-initialized elements
// will be added to the back.
// Assume all existing iterators will be invalidated.
void resize(size_t new_size);
// Returns a reference to the value at `index` in this list. Fails with a
// `CHECK()` if `index >= size()`.
const Value& operator[](size_t index) const;
Value& operator[](size_t index);
// Removes all value from this list.
REINITIALIZES_AFTER_MOVE void clear();
// Removes the value referenced by `pos` in this list and returns an
// iterator to the value following the removed value.
iterator erase(iterator pos);
const_iterator erase(const_iterator pos);
// Remove the values in the range [`first`, `last`). Returns iterator to the
// first value following the removed range, which is `last`. If `first` ==
// `last`, removes nothing and returns `last`.
iterator erase(iterator first, iterator last);
const_iterator erase(const_iterator first, const_iterator last);
// Creates a deep copy of this dictionary.
List Clone() const;
// Appends `value` to the end of this list.
void Append(Value&& value) &;
void Append(bool value) &;
template <typename T>
void Append(const T*) & = delete;
void Append(int value) &;
void Append(double value) &;
void Append(StringPiece value) &;
void Append(StringPiece16 value) &;
void Append(const char* value) &;
void Append(const char16_t* value) &;
void Append(std::string&& value) &;
void Append(BlobStorage&& value) &;
void Append(Dict&& value) &;
void Append(List&& value) &;
// Rvalue overrides of the `Append` methods, which allow you to construct
// a `Value::List` builder-style:
//
// Value::List result = Value::List()
// .Append("first value")
// .Append(2)
// .Append(true);
//
// Each method returns a rvalue reference to `this`, so this is as efficient
// as (and less mistake-prone than) stand-alone calls to `Append`.
//
// The equivalent code without using these builder-style methods:
//
// Value::List bad_example;
// bad_example.Append("first value");
// bad_example.Append(2);
// bad_example.Append(true);
//
List&& Append(Value&& value) &&;
List&& Append(bool value) &&;
template <typename T>
List&& Append(const T*) && = delete;
List&& Append(int value) &&;
List&& Append(double value) &&;
List&& Append(StringPiece value) &&;
List&& Append(StringPiece16 value) &&;
List&& Append(const char* value) &&;
List&& Append(const char16_t* value) &&;
List&& Append(std::string&& value) &&;
List&& Append(BlobStorage&& value) &&;
List&& Append(Dict&& value) &&;
List&& Append(List&& value) &&;
// Inserts `value` before `pos` in this list. Returns an iterator to the
// inserted value.
// TODO(dcheng): Should this provide the same set of overloads that Append()
// does?
iterator Insert(const_iterator pos, Value&& value);
// Erases all values equal to `value` from this list.
size_t EraseValue(const Value& value);
// Erases all values for which `predicate` evaluates to true from this list.
template <typename Predicate>
size_t EraseIf(Predicate predicate) {
return base::EraseIf(storage_, predicate);
}
// Estimates dynamic memory usage. Requires tracing support
// (enable_base_tracing gn flag), otherwise always returns 0. See
// base/trace_event/memory_usage_estimator.h for more info.
size_t EstimateMemoryUsage() const;
// Serializes to a string for logging and debug purposes.
std::string DebugString() const;
#if BUILDFLAG(ENABLE_BASE_TRACING)
// Write this object into a trace.
void WriteIntoTrace(perfetto::TracedValue) const;
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
private:
using ListStorage = std::vector<Value>;
BASE_EXPORT friend bool operator==(const List& lhs, const List& rhs);
BASE_EXPORT friend bool operator!=(const List& lhs, const List& rhs);
BASE_EXPORT friend bool operator<(const List& lhs, const List& rhs);
BASE_EXPORT friend bool operator>(const List& lhs, const List& rhs);
BASE_EXPORT friend bool operator<=(const List& lhs, const List& rhs);
BASE_EXPORT friend bool operator>=(const List& lhs, const List& rhs);
explicit List(const std::vector<Value>& storage);
std::vector<Value> storage_;
};
// Note: Do not add more types. See the file-level comment above for why.
// Comparison operators so that Values can easily be used with standard
// library algorithms and associative containers.
BASE_EXPORT friend bool operator==(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator!=(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator<(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator>(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator<=(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator>=(const Value& lhs, const Value& rhs);
BASE_EXPORT friend bool operator==(const Value& lhs, bool rhs);
friend bool operator==(bool lhs, const Value& rhs) { return rhs == lhs; }
friend bool operator!=(const Value& lhs, bool rhs) { return !(lhs == rhs); }
friend bool operator!=(bool lhs, const Value& rhs) { return !(lhs == rhs); }
template <typename T>
friend bool operator==(const Value& lhs, const T* rhs) = delete;
template <typename T>
friend bool operator==(const T* lhs, const Value& rhs) = delete;
template <typename T>
friend bool operator!=(const Value& lhs, const T* rhs) = delete;
template <typename T>
friend bool operator!=(const T* lhs, const Value& rhs) = delete;
BASE_EXPORT friend bool operator==(const Value& lhs, int rhs);
friend bool operator==(int lhs, const Value& rhs) { return rhs == lhs; }
friend bool operator!=(const Value& lhs, int rhs) { return !(lhs == rhs); }
friend bool operator!=(int lhs, const Value& rhs) { return !(lhs == rhs); }
BASE_EXPORT friend bool operator==(const Value& lhs, double rhs);
friend bool operator==(double lhs, const Value& rhs) { return rhs == lhs; }
friend bool operator!=(const Value& lhs, double rhs) { return !(lhs == rhs); }
friend bool operator!=(double lhs, const Value& rhs) { return !(lhs == rhs); }
// Note: StringPiece16 overload intentionally omitted: Value internally stores
// strings as UTF-8. While it is possible to implement a comparison operator
// that would not require first creating a new UTF-8 string from the UTF-16
// string argument, it is simpler to just not implement it at all for a rare
// use case.
BASE_EXPORT friend bool operator==(const Value& lhs, StringPiece rhs);
friend bool operator==(StringPiece lhs, const Value& rhs) {
return rhs == lhs;
}
friend bool operator!=(const Value& lhs, StringPiece rhs) {
return !(lhs == rhs);
}
friend bool operator!=(StringPiece lhs, const Value& rhs) {
return !(lhs == rhs);
}
friend bool operator==(const Value& lhs, const char* rhs) {
return lhs == StringPiece(rhs);
}
friend bool operator==(const char* lhs, const Value& rhs) {
return rhs == lhs;
}
friend bool operator!=(const Value& lhs, const char* rhs) {
return !(lhs == rhs);
}
friend bool operator!=(const char* lhs, const Value& rhs) {
return !(lhs == rhs);
}
friend bool operator==(const Value& lhs, const std::string& rhs) {
return lhs == StringPiece(rhs);
}
friend bool operator==(const std::string& lhs, const Value& rhs) {
return rhs == lhs;
}
friend bool operator!=(const Value& lhs, const std::string& rhs) {
return !(lhs == rhs);
}
friend bool operator!=(const std::string& lhs, const Value& rhs) {
return !(lhs == rhs);
}
// Note: Blob support intentionally omitted as an experiment for potentially
// wholly removing Blob support from Value itself in the future.
BASE_EXPORT friend bool operator==(const Value& lhs, const Value::Dict& rhs);
friend bool operator==(const Value::Dict& lhs, const Value& rhs) {
return rhs == lhs;
}
friend bool operator!=(const Value& lhs, const Value::Dict& rhs) {
return !(lhs == rhs);
}
friend bool operator!=(const Value::Dict& lhs, const Value& rhs) {
return !(lhs == rhs);
}
BASE_EXPORT friend bool operator==(const Value& lhs, const Value::List& rhs);
friend bool operator==(const Value::List& lhs, const Value& rhs) {
return rhs == lhs;
}
friend bool operator!=(const Value& lhs, const Value::List& rhs) {
return !(lhs == rhs);
}
friend bool operator!=(const Value::List& lhs, const Value& rhs) {
return !(lhs == rhs);
}
// Estimates dynamic memory usage. Requires tracing support
// (enable_base_tracing gn flag), otherwise always returns 0. See
// base/trace_event/memory_usage_estimator.h for more info.
size_t EstimateMemoryUsage() const;
// Serializes to a string for logging and debug purposes.
std::string DebugString() const;
#if BUILDFLAG(ENABLE_BASE_TRACING)
// Write this object into a trace.
void WriteIntoTrace(perfetto::TracedValue) const;
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
template <typename Visitor>
auto Visit(Visitor&& visitor) const {
return absl::visit(std::forward<Visitor>(visitor), data_);
}
private:
// For access to DoubleStorage.
friend class ValueView;
// Special case for doubles, which are aligned to 8 bytes on some
// 32-bit architectures. In this case, a simple declaration as a
// double member would make the whole union 8 byte-aligned, which
// would also force 4 bytes of wasted padding space before it in
// the Value layout.
//
// To override this, store the value as an array of 32-bit integers, and
// perform the appropriate bit casts when reading / writing to it.
class BASE_EXPORT DoubleStorage {
public:
explicit DoubleStorage(double v);
DoubleStorage(const DoubleStorage&) = default;
DoubleStorage& operator=(const DoubleStorage&) = default;
// Provide an implicit conversion to double to simplify the use of visitors
// with `Value::Visit()`. Otherwise, visitors would need a branch for
// handling `DoubleStorage` like:
//
// value.Visit([] (const auto& member) {
// using T = std::decay_t<decltype(member)>;
// if constexpr (std::is_same_v<T, Value::DoubleStorage>) {
// SomeFunction(double{member});
// } else {
// SomeFunction(member);
// }
// });
operator double() const { return base::bit_cast<double>(v_); }
private:
friend bool operator==(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return double{lhs} == double{rhs};
}
friend bool operator!=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return double{lhs} < double{rhs};
}
friend bool operator>(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return rhs < lhs;
}
friend bool operator<=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return !(rhs < lhs);
}
friend bool operator>=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
return !(lhs < rhs);
}
alignas(4) std::array<char, sizeof(double)> v_;
};
// Internal constructors, allowing the simplify the implementation of Clone().
explicit Value(absl::monostate);
explicit Value(DoubleStorage storage);
// A helper for static functions used for cloning a Value or a ValueView.
class CloningHelper;
absl::variant<absl::monostate,
bool,
int,
DoubleStorage,
std::string,
BlobStorage,
Dict,
List>
data_;
};
// Adapter so `Value::Dict` or `Value::List` can be directly passed to JSON
// serialization methods without having to clone the contents and transfer
// ownership of the clone to a `Value` wrapper object.
//
// Like `StringPiece` and `span<T>`, this adapter does NOT retain ownership. Any
// underlying object that is passed by reference (i.e. `std::string`,
// `Value::BlobStorage`, `Value::Dict`, `Value::List`, or `Value`) MUST remain
// live as long as there is a `ValueView` referencing it.
//
// While it might be nice to just use the `absl::variant` type directly, the
// need to use `std::reference_wrapper` makes it clunky. `absl::variant` and
// `std::reference_wrapper` both support implicit construction, but C++ only
// allows at most one user-defined conversion in an implicit conversion
// sequence. If this adapter and its implicit constructors did not exist,
// callers would need to use `std::ref` or `std::cref` to pass `Value::Dict` or
// `Value::List` to a function with a `ValueView` parameter.
class BASE_EXPORT GSL_POINTER ValueView {
public:
ValueView() = default;
ValueView(bool value) : data_view_(value) {}
template <typename T>
ValueView(const T*) = delete;
ValueView(int value) : data_view_(value) {}
ValueView(double value)
: data_view_(absl::in_place_type_t<Value::DoubleStorage>(), value) {}
ValueView(StringPiece value) : data_view_(value) {}
ValueView(const char* value) : ValueView(StringPiece(value)) {}
ValueView(const std::string& value) : ValueView(StringPiece(value)) {}
// Note: UTF-16 is intentionally not supported. ValueView is intended to be a
// low-cost view abstraction, but Value internally represents strings as
// UTF-8, so it would not be possible to implement this without allocating an
// entirely new UTF-8 string.
ValueView(const Value::BlobStorage& value) : data_view_(value) {}
ValueView(const Value::Dict& value) : data_view_(value) {}
ValueView(const Value::List& value) : data_view_(value) {}
ValueView(const Value& value);
// This is the only 'getter' method provided as `ValueView` is not intended
// to be a general replacement of `Value`.
template <typename Visitor>
auto Visit(Visitor&& visitor) const {
return absl::visit(std::forward<Visitor>(visitor), data_view_);
}
// Returns a clone of the underlying Value.
Value ToValue() const;
private:
using ViewType =
absl::variant<absl::monostate,
bool,
int,
Value::DoubleStorage,
StringPiece,
std::reference_wrapper<const Value::BlobStorage>,
std::reference_wrapper<const Value::Dict>,
std::reference_wrapper<const Value::List>>;
public:
using DoubleStorageForTest = Value::DoubleStorage;
const ViewType& data_view_for_test() const { return data_view_; }
private:
ViewType data_view_;
};
// This interface is implemented by classes that know how to serialize
// Value objects.
class BASE_EXPORT ValueSerializer {
public:
virtual ~ValueSerializer();
virtual bool Serialize(ValueView root) = 0;
};
// This interface is implemented by classes that know how to deserialize Value
// objects.
class BASE_EXPORT ValueDeserializer {
public:
virtual ~ValueDeserializer();
// This method deserializes the subclass-specific format into a Value object.
// If the return value is non-NULL, the caller takes ownership of returned
// Value.
//
// If the return value is nullptr, and if `error_code` is non-nullptr,
// `*error_code` will be set to an integer value representing the underlying
// error. See "enum ErrorCode" below for more detail about the integer value.
//
// If `error_message` is non-nullptr, it will be filled in with a formatted
// error message including the location of the error if appropriate.
virtual std::unique_ptr<Value> Deserialize(int* error_code,
std::string* error_message) = 0;
// The integer-valued error codes form four groups:
// - The value 0 means no error.
// - Values between 1 and 999 inclusive mean an error in the data (i.e.
// content). The bytes being deserialized are not in the right format.
// - Values 1000 and above mean an error in the metadata (i.e. context). The
// file could not be read, the network is down, etc.
// - Negative values are reserved.
//
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
enum ErrorCode {
kErrorCodeNoError = 0,
// kErrorCodeInvalidFormat is a generic error code for "the data is not in
// the right format". Subclasses of ValueDeserializer may return other
// values for more specific errors.
kErrorCodeInvalidFormat = 1,
// kErrorCodeFirstMetadataError is the minimum value (inclusive) of the
// range of metadata errors.
kErrorCodeFirstMetadataError = 1000,
};
// The `error_code` argument can be one of the ErrorCode values, but it is
// not restricted to only being 0, 1 or 1000. Subclasses of ValueDeserializer
// can define their own error code values.
static inline bool ErrorCodeIsDataError(int error_code) {
return (kErrorCodeInvalidFormat <= error_code) &&
(error_code < kErrorCodeFirstMetadataError);
}
};
// Stream operator so Values can be pretty printed by gtest.
BASE_EXPORT std::ostream& operator<<(std::ostream& out, const Value& value);
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
const Value::Dict& dict);
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
const Value::List& list);
// Stream operator so that enum class Types can be used in log statements.
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
const Value::Type& type);
} // namespace base
#endif // BASE_VALUES_H_
|