File: system_power_monitor.cc

package info (click to toggle)
chromium 120.0.6099.224-1~deb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,112,112 kB
  • sloc: cpp: 32,907,025; ansic: 8,148,123; javascript: 3,679,536; python: 2,031,248; asm: 959,718; java: 804,675; xml: 617,256; sh: 111,417; objc: 100,835; perl: 88,443; cs: 53,032; makefile: 29,579; fortran: 24,137; php: 21,162; tcl: 21,147; sql: 20,809; ruby: 17,735; pascal: 12,864; yacc: 8,045; lisp: 3,388; lex: 1,323; ada: 727; awk: 329; jsp: 267; csh: 117; exp: 43; sed: 37
file content (228 lines) | stat: -rw-r--r-- 8,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/power_metrics/system_power_monitor.h"

#include <array>
#include <cstring>

#include "base/functional/bind.h"
#include "base/no_destructor.h"
#include "base/notreached.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"

namespace power_metrics {

namespace {

constexpr const char kTraceCategory[] =
    TRACE_DISABLED_BY_DEFAULT("system_power");

constexpr const char kPackagePowerTraceCounterName[] = "Package Power (mW)";
constexpr const char kCpuPowerTraceCounterName[] = "CPU Power (mW)";
constexpr const char kIntegratedGpuPowerTraceCounterName[] = "iGPU Power (mW)";
constexpr const char kDramPowerTraceCounterName[] = "DRAM Power (mW)";
constexpr const char kPsysPowerTraceCounterName[] = "Psys Power (mW)";
constexpr const char kVddcrVddTraceCounterName[] = "VDDCR VDD (mW)";
constexpr const char kVddcrSocTraceCounterName[] = "VDDCR SOC (mW)";
constexpr const char kCurrentSocketTraceCounterName[] = "Current Socket (mW)";
constexpr const char kApuPowerTraceCounterName[] = "APU Power (mW)";

// Here we determine if the specified metric is valid according to whether its
// corresponding value in the provided sample is greater than 0, since the
// absolute energy must be greater than 0.
bool GenerateValidMetrics(const EnergyMetricsProvider::EnergyMetrics& sample,
                          std::vector<const char*>& valid_metrics) {
  if (sample.package_nanojoules > 0) {
    valid_metrics.push_back(kPackagePowerTraceCounterName);
  }
  if (sample.cpu_nanojoules > 0) {
    valid_metrics.push_back(kCpuPowerTraceCounterName);
  }
  if (sample.gpu_nanojoules > 0) {
    valid_metrics.push_back(kIntegratedGpuPowerTraceCounterName);
  }
  if (sample.dram_nanojoules > 0) {
    valid_metrics.push_back(kDramPowerTraceCounterName);
  }
  if (sample.psys_nanojoules > 0) {
    valid_metrics.push_back(kPsysPowerTraceCounterName);
  }
  if (sample.vdd_nanojoules > 0) {
    valid_metrics.push_back(kVddcrVddTraceCounterName);
  }
  if (sample.soc_nanojoules > 0) {
    valid_metrics.push_back(kVddcrSocTraceCounterName);
  }
  if (sample.socket_nanojoules > 0) {
    valid_metrics.push_back(kCurrentSocketTraceCounterName);
  }
  if (sample.apu_nanojoules > 0) {
    valid_metrics.push_back(kApuPowerTraceCounterName);
  }
  return !valid_metrics.empty();
}

int64_t CalculateNanojoulesDeltaFromSamples(
    const EnergyMetricsProvider::EnergyMetrics& new_sample,
    const EnergyMetricsProvider::EnergyMetrics& old_sample,
    const char* metric) {
  if (std::strcmp(metric, kPackagePowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.package_nanojoules -
                                old_sample.package_nanojoules);
  } else if (std::strcmp(metric, kCpuPowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.cpu_nanojoules -
                                old_sample.cpu_nanojoules);
  } else if (std::strcmp(metric, kIntegratedGpuPowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.gpu_nanojoules -
                                old_sample.gpu_nanojoules);
  } else if (std::strcmp(metric, kDramPowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.dram_nanojoules -
                                old_sample.dram_nanojoules);
  } else if (std::strcmp(metric, kPsysPowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.psys_nanojoules -
                                old_sample.psys_nanojoules);
  } else if (std::strcmp(metric, kVddcrVddTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.vdd_nanojoules -
                                old_sample.vdd_nanojoules);
  } else if (std::strcmp(metric, kVddcrSocTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.soc_nanojoules -
                                old_sample.soc_nanojoules);
  } else if (std::strcmp(metric, kCurrentSocketTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.socket_nanojoules -
                                old_sample.socket_nanojoules);
  } else if (std::strcmp(metric, kApuPowerTraceCounterName) == 0) {
    return static_cast<int64_t>(new_sample.apu_nanojoules -
                                old_sample.apu_nanojoules);
  }
  NOTREACHED_NORETURN() << "Unexpected metric: " << metric;
}

}  // namespace

SystemPowerMonitorDelegate::SystemPowerMonitorDelegate() = default;
SystemPowerMonitorDelegate::~SystemPowerMonitorDelegate() = default;

void SystemPowerMonitorDelegate::RecordSystemPower(const char* metric,
                                                   base::TimeTicks timestamp,
                                                   int64_t power) {
  TRACE_COUNTER_WITH_TIMESTAMP1(TRACE_DISABLED_BY_DEFAULT("system_power"),
                                metric, timestamp, power);
}

bool SystemPowerMonitorDelegate::IsTraceCategoryEnabled() const {
  bool enabled;
  TRACE_EVENT_CATEGORY_GROUP_ENABLED(kTraceCategory, &enabled);
  return enabled;
}

SystemPowerMonitorHelper::SystemPowerMonitorHelper(
    std::unique_ptr<EnergyMetricsProvider> provider,
    std::unique_ptr<SystemPowerMonitorDelegate> delegate)
    : provider_(std::move(provider)), delegate_(std::move(delegate)) {}

SystemPowerMonitorHelper::~SystemPowerMonitorHelper() = default;

void SystemPowerMonitorHelper::Start() {
  CHECK(provider_);
  CHECK(!timer_.IsRunning());
  if (!delegate_->IsTraceCategoryEnabled()) {
    return;
  }

  // If the provider fails to capture valid sample at the first time, we
  // determine that it is unable to provide valid data and give up starting the
  // timer.
  auto sample = provider_->CaptureMetrics();
  if (!sample.has_value()) {
    return;
  }

  // To avoid redundant loops on invalid metrics, we select the valid metrics
  // before start.
  CHECK(valid_metrics_.empty());
  if (!GenerateValidMetrics(sample.value(), valid_metrics_)) {
    return;
  }

  last_sample_ = sample.value();
  last_timestamp_ = base::TimeTicks::Now();

  timer_.Start(FROM_HERE, kDefaultSampleInterval,
               base::BindRepeating(&SystemPowerMonitorHelper::Sample,
                                   base::Unretained(this)));
}

void SystemPowerMonitorHelper::Stop() {
  timer_.Stop();
  valid_metrics_.clear();
}

void SystemPowerMonitorHelper::Sample() {
  // If the provider fails to capture valid metrics after the timer started,
  // we leave the timer running.
  auto sample = provider_->CaptureMetrics();
  if (!sample.has_value()) {
    return;
  }

  base::TimeTicks timestamp = base::TimeTicks::Now();
  base::TimeDelta interval = timestamp - last_timestamp_;
  CHECK(interval.is_positive());

  for (auto const* metric : valid_metrics_) {
    int64_t nanojoules = CalculateNanojoulesDeltaFromSamples(
        sample.value(), last_sample_, metric);
    CHECK_GE(nanojoules, 0ll);

    int64_t milliwatts = nanojoules / interval.InMicroseconds();
    delegate_->RecordSystemPower(metric, last_timestamp_, milliwatts);
  }

  last_sample_ = sample.value();
  last_timestamp_ = timestamp;
}

bool SystemPowerMonitorHelper::IsTimerRunningForTesting() {
  return timer_.IsRunning();
}

SystemPowerMonitor::SystemPowerMonitor()
    : SystemPowerMonitor(EnergyMetricsProvider::Create(),
                         std::make_unique<SystemPowerMonitorDelegate>()) {}

SystemPowerMonitor::SystemPowerMonitor(
    std::unique_ptr<EnergyMetricsProvider> provider,
    std::unique_ptr<SystemPowerMonitorDelegate> delegate) {
  helper_ = base::SequenceBound<SystemPowerMonitorHelper>(
      base::ThreadPool::CreateSequencedTaskRunner(
          {base::MayBlock(), base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN,
           base::TaskPriority::BEST_EFFORT}),
      std::move(provider), std::move(delegate));
}

SystemPowerMonitor::~SystemPowerMonitor() = default;

// static
SystemPowerMonitor* SystemPowerMonitor::GetInstance() {
  static base::NoDestructor<SystemPowerMonitor> instance;
  return instance.get();
}

void SystemPowerMonitor::OnTraceLogEnabled() {
  helper_.AsyncCall(&SystemPowerMonitorHelper::Start);
}

void SystemPowerMonitor::OnTraceLogDisabled() {
  helper_.AsyncCall(&SystemPowerMonitorHelper::Stop);
}

base::SequenceBound<SystemPowerMonitorHelper>*
SystemPowerMonitor::GetHelperForTesting() {
  return helper_ ? &helper_ : nullptr;
}

}  // namespace power_metrics