1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/pwg_encoder/pwg_encoder.h"
#include <limits.h>
#include <string.h>
#include <algorithm>
#include <memory>
#include "base/big_endian.h"
#include "base/logging.h"
#include "components/pwg_encoder/bitmap_image.h"
namespace pwg_encoder {
namespace {
const uint32_t kBitsPerColor = 8;
const uint32_t kColorOrder = 0; // chunky.
// Coefficients used to convert from RGB to monochrome.
const uint32_t kRedCoefficient = 2125;
const uint32_t kGreenCoefficient = 7154;
const uint32_t kBlueCoefficient = 721;
const uint32_t kColorCoefficientDenominator = 10000;
const char kPwgKeyword[] = "RaS2";
const uint32_t kHeaderSize = 1796;
const uint32_t kHeaderCupsDuplex = 272;
const uint32_t kHeaderCupsHwResolutionHorizontal = 276;
const uint32_t kHeaderCupsHwResolutionVertical = 280;
const uint32_t kHeaderCupsTumble = 368;
const uint32_t kHeaderCupsWidth = 372;
const uint32_t kHeaderCupsHeight = 376;
const uint32_t kHeaderCupsBitsPerColor = 384;
const uint32_t kHeaderCupsBitsPerPixel = 388;
const uint32_t kHeaderCupsBytesPerLine = 392;
const uint32_t kHeaderCupsColorOrder = 396;
const uint32_t kHeaderCupsColorSpace = 400;
const uint32_t kHeaderCupsNumColors = 420;
const uint32_t kHeaderPwgTotalPageCount = 452;
const uint32_t kHeaderPwgCrossFeedTransform = 456;
const uint32_t kHeaderPwgFeedTransform = 460;
const int kPwgMaxPackedRows = 256;
const int kPwgMaxPackedPixels = 128;
struct RGBA8 {
uint8_t red;
uint8_t green;
uint8_t blue;
uint8_t alpha;
};
struct BGRA8 {
uint8_t blue;
uint8_t green;
uint8_t red;
uint8_t alpha;
};
template <class InputStruct>
void EncodePixelToRGB(const void* pixel, std::string* output) {
const InputStruct* i = reinterpret_cast<const InputStruct*>(pixel);
output->push_back(static_cast<char>(i->red));
output->push_back(static_cast<char>(i->green));
output->push_back(static_cast<char>(i->blue));
}
template <class InputStruct>
void EncodePixelToMonochrome(const void* pixel, std::string* output) {
const InputStruct* i = reinterpret_cast<const InputStruct*>(pixel);
output->push_back(static_cast<char>((i->red * kRedCoefficient +
i->green * kGreenCoefficient +
i->blue * kBlueCoefficient) /
kColorCoefficientDenominator));
}
std::string EncodePageHeader(const BitmapImage& image,
const PwgHeaderInfo& pwg_header_info) {
char header[kHeaderSize];
memset(header, 0, kHeaderSize);
uint32_t num_colors =
pwg_header_info.color_space == PwgHeaderInfo::SGRAY ? 1 : 3;
uint32_t bits_per_pixel = num_colors * kBitsPerColor;
base::WriteBigEndian<uint32_t>(header + kHeaderCupsDuplex,
pwg_header_info.duplex ? 1 : 0);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsHwResolutionHorizontal,
pwg_header_info.dpi.width());
base::WriteBigEndian<uint32_t>(header + kHeaderCupsHwResolutionVertical,
pwg_header_info.dpi.height());
base::WriteBigEndian<uint32_t>(header + kHeaderCupsTumble,
pwg_header_info.tumble ? 1 : 0);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsWidth,
image.size().width());
base::WriteBigEndian<uint32_t>(header + kHeaderCupsHeight,
image.size().height());
base::WriteBigEndian<uint32_t>(header + kHeaderCupsBitsPerColor,
kBitsPerColor);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsBitsPerPixel,
bits_per_pixel);
base::WriteBigEndian<uint32_t>(
header + kHeaderCupsBytesPerLine,
(bits_per_pixel * image.size().width() + 7) / 8);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsColorOrder, kColorOrder);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsColorSpace,
pwg_header_info.color_space);
base::WriteBigEndian<uint32_t>(header + kHeaderCupsNumColors, num_colors);
base::WriteBigEndian<uint32_t>(header + kHeaderPwgCrossFeedTransform,
pwg_header_info.flipx ? -1 : 1);
base::WriteBigEndian<uint32_t>(header + kHeaderPwgFeedTransform,
pwg_header_info.flipy ? -1 : 1);
base::WriteBigEndian<uint32_t>(header + kHeaderPwgTotalPageCount,
pwg_header_info.total_pages);
return std::string(header, kHeaderSize);
}
template <typename InputStruct, class RandomAccessIterator>
void EncodeRow(RandomAccessIterator pos,
RandomAccessIterator row_end,
bool monochrome,
std::string* output) {
// According to PWG-raster, a sequence of N identical pixels (up to 128)
// can be encoded by a byte N-1, followed by the information on
// that pixel. Any generic sequence of N pixels (up to 129) can be encoded
// with (signed) byte 1-N, followed by the information on the N pixels.
// Notice that for sequences of 1 pixel there is no difference between
// the two encodings.
// We encode every largest sequence of identical pixels together because it
// usually saves the most space. Every other pixel should be encoded in the
// smallest number of generic sequences.
// NOTE: the algorithm is not optimal especially in case of monochrome.
while (pos != row_end) {
RandomAccessIterator it = pos + 1;
RandomAccessIterator end = std::min(pos + kPwgMaxPackedPixels, row_end);
// Counts how many identical pixels (up to 128).
while (it != end && *pos == *it) {
++it;
}
if (it != pos + 1) { // More than one pixel
output->push_back(static_cast<char>((it - pos) - 1));
if (monochrome)
EncodePixelToMonochrome<InputStruct>(&*pos, output);
else
EncodePixelToRGB<InputStruct>(&*pos, output);
pos = it;
} else {
// Finds how many pixels there are each different from the previous one.
// IMPORTANT: even if sequences of different pixels can contain as many
// as 129 pixels, we restrict to 128 because some decoders don't manage
// it correctly. So iterating until it != end is correct.
while (it != end && *it != *(it - 1)) {
++it;
}
// Optimization: ignores the last pixel of the sequence if it is followed
// by an identical pixel, as it is more convenient for it to be the start
// of a new sequence of identical pixels. Notice that we don't compare
// to end, but row_end.
if (it != row_end && *it == *(it - 1)) {
--it;
}
output->push_back(static_cast<char>(1 - (it - pos)));
while (pos != it) {
if (monochrome)
EncodePixelToMonochrome<InputStruct>(&*pos, output);
else
EncodePixelToRGB<InputStruct>(&*pos, output);
++pos;
}
}
}
}
const uint8_t* GetRow(const BitmapImage& image, int row, bool flipy) {
return image.GetPixel(
gfx::Point(0, flipy ? image.size().height() - 1 - row : row));
}
template <typename InputStruct>
std::string EncodePageWithColorspace(const BitmapImage& image,
const PwgHeaderInfo& pwg_header_info) {
bool monochrome = pwg_header_info.color_space == PwgHeaderInfo::SGRAY;
std::string output = EncodePageHeader(image, pwg_header_info);
// Ensure no integer overflow.
CHECK(image.size().width() < INT_MAX / image.channels());
int row_size = image.size().width() * image.channels();
int row_number = 0;
while (row_number < image.size().height()) {
const uint8_t* current_row =
GetRow(image, row_number++, pwg_header_info.flipy);
int num_identical_rows = 1;
// We count how many times the current row is repeated.
while (num_identical_rows < kPwgMaxPackedRows &&
row_number < image.size().height() &&
!memcmp(current_row,
GetRow(image, row_number, pwg_header_info.flipy),
row_size)) {
num_identical_rows++;
row_number++;
}
output.push_back(static_cast<char>(num_identical_rows - 1));
// Both supported colorspaces have a 32-bit pixels information.
// Converts the list of uint8_t to uint32_t as every pixels contains 4 bytes
// of information and comparison of elements is easier. The actual
// Management of the bytes of the pixel is done by pixel_encoder function
// on the original array to avoid endian problems.
const uint32_t* pos = reinterpret_cast<const uint32_t*>(current_row);
const uint32_t* row_end = pos + image.size().width();
if (!pwg_header_info.flipx) {
EncodeRow<InputStruct>(pos, row_end, monochrome, &output);
} else {
// We reverse the iterators.
EncodeRow<InputStruct>(std::reverse_iterator<const uint32_t*>(row_end),
std::reverse_iterator<const uint32_t*>(pos),
monochrome, &output);
}
}
return output;
}
} // namespace
// static
std::string PwgEncoder::GetDocumentHeader() {
std::string output;
output.append(kPwgKeyword, 4);
return output;
}
// static
std::string PwgEncoder::EncodePage(const BitmapImage& image,
const PwgHeaderInfo& pwg_header_info) {
// pwg_header_info.color_space can only contain color spaces that are
// supported, so no sanity check is needed.
std::string data;
switch (image.colorspace()) {
case BitmapImage::RGBA:
data = EncodePageWithColorspace<RGBA8>(image, pwg_header_info);
break;
case BitmapImage::BGRA:
data = EncodePageWithColorspace<BGRA8>(image, pwg_header_info);
break;
default:
LOG(ERROR) << "Unsupported colorspace.";
break;
}
return data;
}
} // namespace pwg_encoder
|