1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/segmentation_platform/internal/execution/processing/uma_feature_processor.h"
#include "base/functional/bind.h"
#include "base/location.h"
#include "base/memory/weak_ptr.h"
#include "base/task/sequenced_task_runner.h"
#include "base/timer/elapsed_timer.h"
#include "components/segmentation_platform/internal/database/signal_database.h"
#include "components/segmentation_platform/internal/execution/processing/feature_aggregator.h"
#include "components/segmentation_platform/internal/execution/processing/feature_processor_state.h"
#include "components/segmentation_platform/internal/metadata/metadata_utils.h"
#include "components/segmentation_platform/internal/stats.h"
#include "components/segmentation_platform/public/proto/aggregation.pb.h"
#include "components/segmentation_platform/public/proto/model_metadata.pb.h"
#include "components/segmentation_platform/public/proto/types.pb.h"
namespace segmentation_platform::processing {
namespace {
const proto::UMAFeature& GetAsUMA(const Data& data) {
DCHECK(data.input_feature.has_value() || data.output_feature.has_value());
if (data.input_feature.has_value()) {
return data.input_feature->uma_feature();
}
return data.output_feature->uma_output().uma_feature();
}
} // namespace
UmaFeatureProcessor::UmaFeatureProcessor(
base::flat_map<FeatureIndex, Data>&& uma_features,
SignalDatabase* signal_database,
FeatureAggregator* feature_aggregator,
const base::Time prediction_time,
const base::Time observation_time,
const base::TimeDelta bucket_duration,
const SegmentId segment_id,
bool is_output)
: uma_features_(std::move(uma_features)),
signal_database_(signal_database),
feature_aggregator_(feature_aggregator),
prediction_time_(prediction_time),
observation_time_(observation_time),
bucket_duration_(bucket_duration),
segment_id_(segment_id),
is_output_(is_output) {}
UmaFeatureProcessor::~UmaFeatureProcessor() = default;
void UmaFeatureProcessor::Process(
std::unique_ptr<FeatureProcessorState> feature_processor_state,
QueryProcessorCallback callback) {
feature_processor_state_ = std::move(feature_processor_state);
callback_ = std::move(callback);
size_t max_bucket_count = 0;
for (const auto& feature : uma_features_) {
// Validate the proto::UMAFeature metadata.
const proto::UMAFeature& uma_feature = GetAsUMA(feature.second);
if (metadata_utils::ValidateMetadataUmaFeature(uma_feature) !=
metadata_utils::ValidationResult::kValidationSuccess) {
feature_processor_state_->SetError(
stats::FeatureProcessingError::kUmaValidationError);
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(std::move(callback_),
std::move(feature_processor_state_),
std::move(result_)));
return;
}
if (max_bucket_count < uma_feature.bucket_count()) {
max_bucket_count = uma_feature.bucket_count();
}
}
ProcessOnGotAllSamples(*signal_database_->GetAllSamples());
}
void UmaFeatureProcessor::GetStartAndEndTime(size_t bucket_count,
base::Time& start_time,
base::Time& end_time) const {
base::TimeDelta duration = bucket_duration_ * bucket_count;
if (is_output_) {
if (observation_time_ == base::Time()) {
start_time = prediction_time_ - duration;
end_time = prediction_time_;
} else if (observation_time_ - prediction_time_ > duration) {
start_time = observation_time_ - duration;
end_time = observation_time_;
} else {
start_time = prediction_time_;
end_time = observation_time_;
}
} else {
start_time = prediction_time_ - duration;
end_time = prediction_time_;
}
}
void UmaFeatureProcessor::ProcessOnGotAllSamples(
const std::vector<SignalDatabase::DbEntry>& samples) {
while (!uma_features_.empty()) {
if (feature_processor_state_->error()) {
break;
}
const auto& it = uma_features_.begin();
proto::UMAFeature next_feature = GetAsUMA(it->second);
FeatureIndex index = it->first;
uma_features_.erase(it);
ProcessSingleUmaFeature(samples, index, next_feature);
}
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback_), std::move(feature_processor_state_),
std::move(result_)));
}
void UmaFeatureProcessor::ProcessSingleUmaFeature(
const std::vector<SignalDatabase::DbEntry>& samples,
FeatureIndex index,
const proto::UMAFeature& feature) {
// Enum histograms can optionally only accept some of the enum values.
// While the proto::UMAFeature is available, capture a vector of the
// accepted enum values. An empty vector is ignored (all values are
// considered accepted).
std::vector<int32_t> accepted_enum_ids{};
if (feature.type() == proto::SignalType::HISTOGRAM_ENUM) {
for (int i = 0; i < feature.enum_ids_size(); ++i) {
accepted_enum_ids.emplace_back(feature.enum_ids(i));
}
}
base::Time start_time;
base::Time end_time;
GetStartAndEndTime(feature.bucket_count(), start_time, end_time);
base::ElapsedTimer timer;
// We now have all the data required to process a single feature, so we can
// process it synchronously, and insert it into the
// FeatureProcessorState::input_tensor so we can later pass it to the ML model
// executor.
absl::optional<std::vector<float>> result = feature_aggregator_->Process(
feature.type(), feature.name_hash(), feature.aggregation(),
feature.bucket_count(), start_time, end_time, bucket_duration_,
accepted_enum_ids, samples);
// If no feature data is available, use the default values specified instead.
if (result.has_value()) {
const std::vector<float>& feature_data = result.value();
DCHECK_EQ(feature.tensor_length(), feature_data.size());
result_[index] =
std::vector<ProcessedValue>(feature_data.begin(), feature_data.end());
} else {
DCHECK_EQ(feature.tensor_length(),
static_cast<unsigned int>(feature.default_values_size()))
<< " Mismatch between expected value size and default value size for "
"UMA feature '"
<< feature.name()
<< "'. Did you forget to specify a default value for this feature?";
result_[index] = std::vector<ProcessedValue>(
feature.default_values().begin(), feature.default_values().end());
}
stats::RecordModelExecutionDurationFeatureProcessing(segment_id_,
timer.Elapsed());
}
} // namespace segmentation_platform::processing
|