1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/encoded_program.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "base/environment.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "courgette/label_manager.h"
#include "courgette/streams.h"
namespace courgette {
namespace {
// Serializes a vector of integral values using Varint32 coding.
template<typename V>
CheckBool WriteVector(const V& items, SinkStream* buffer) {
size_t count = items.size();
bool ok = buffer->WriteSizeVarint32(count);
for (size_t i = 0; ok && i < count; ++i) {
ok = buffer->WriteSizeVarint32(items[i]);
}
return ok;
}
template<typename V>
bool ReadVector(V* items, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
bool ok = items->reserve(count);
for (size_t i = 0; ok && i < count; ++i) {
uint32_t item;
ok = buffer->ReadVarint32(&item);
if (ok)
ok = items->push_back(static_cast<typename V::value_type>(item));
}
return ok;
}
// Serializes a vector, using delta coding followed by Varint32Signed coding.
template<typename V>
CheckBool WriteSigned32Delta(const V& set, SinkStream* buffer) {
size_t count = set.size();
bool ok = buffer->WriteSizeVarint32(count);
uint32_t prev = 0;
for (size_t i = 0; ok && i < count; ++i) {
uint32_t current = set[i];
int32_t delta = current - prev;
ok = buffer->WriteVarint32Signed(delta);
prev = current;
}
return ok;
}
template <typename V>
static CheckBool ReadSigned32Delta(V* set, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
set->clear();
bool ok = set->reserve(count);
uint32_t prev = 0;
for (size_t i = 0; ok && i < count; ++i) {
int32_t delta;
ok = buffer->ReadVarint32Signed(&delta);
if (ok) {
uint32_t current = static_cast<uint32_t>(prev + delta);
ok = set->push_back(current);
prev = current;
}
}
return ok;
}
// Write a vector as the byte representation of the contents.
//
// (This only really makes sense for a type T that has sizeof(T)==1, otherwise
// serialized representation is not endian-agnostic. But it is useful to keep
// the possibility of a greater size for experiments comparing Varint32 encoding
// of a vector of larger integrals vs a plain form.)
//
template<typename V>
CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
size_t count = items.size();
bool ok = buffer->WriteSizeVarint32(count);
if (count != 0 && ok) {
size_t byte_count = count * sizeof(typename V::value_type);
ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
}
return ok;
}
template<typename V>
bool ReadVectorU8(V* items, SourceStream* buffer) {
uint32_t count;
if (!buffer->ReadVarint32(&count))
return false;
items->clear();
bool ok = items->resize(count, 0);
if (ok && count != 0) {
size_t byte_count = count * sizeof(typename V::value_type);
return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
}
return ok;
}
/******** InstructionStoreReceptor ********/
// An InstructionReceptor that stores emitted instructions.
class InstructionStoreReceptor : public InstructionReceptor {
public:
explicit InstructionStoreReceptor(ExecutableType exe_type,
EncodedProgram* encoded)
: exe_type_(exe_type), encoded_(encoded) {
CHECK(encoded_);
}
InstructionStoreReceptor(const InstructionStoreReceptor&) = delete;
InstructionStoreReceptor& operator=(const InstructionStoreReceptor&) = delete;
CheckBool EmitPeRelocs() override {
return encoded_->AddPeMakeRelocs(exe_type_);
}
CheckBool EmitElfRelocation() override {
return encoded_->AddElfMakeRelocs();
}
CheckBool EmitOrigin(RVA rva) override { return encoded_->AddOrigin(rva); }
CheckBool EmitSingleByte(uint8_t byte) override {
return encoded_->AddCopy(1, &byte);
}
CheckBool EmitMultipleBytes(const uint8_t* bytes, size_t len) override {
return encoded_->AddCopy(len, bytes);
}
CheckBool EmitRel32(Label* label) override {
return encoded_->AddRel32(label->index_);
}
CheckBool EmitAbs32(Label* label) override {
return encoded_->AddAbs32(label->index_);
}
CheckBool EmitAbs64(Label* label) override {
return encoded_->AddAbs64(label->index_);
}
private:
ExecutableType exe_type_;
raw_ptr<EncodedProgram> encoded_;
};
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Constructor is here rather than in the header. Although the constructor
// appears to do nothing it is fact quite large because of the implicit calls to
// field constructors. Ditto for the destructor.
EncodedProgram::EncodedProgram() = default;
EncodedProgram::~EncodedProgram() = default;
CheckBool EncodedProgram::ImportLabels(
const LabelManager& abs32_label_manager,
const LabelManager& rel32_label_manager) {
if (!WriteRvasToList(abs32_label_manager, &abs32_rva_) ||
!WriteRvasToList(rel32_label_manager, &rel32_rva_)) {
return false;
}
FillUnassignedRvaSlots(&abs32_rva_);
FillUnassignedRvaSlots(&rel32_rva_);
return true;
}
CheckBool EncodedProgram::AddOrigin(RVA origin) {
return ops_.push_back(ORIGIN) && origins_.push_back(origin);
}
CheckBool EncodedProgram::AddCopy(size_t count, const void* bytes) {
const uint8_t* source = static_cast<const uint8_t*>(bytes);
bool ok = true;
// Fold adjacent COPY instructions into one. This nearly halves the size of
// an EncodedProgram with only COPY1 instructions since there are approx plain
// 16 bytes per reloc. This has a working-set benefit during decompression.
// For compression of files with large differences this makes a small (4%)
// improvement in size. For files with small differences this degrades the
// compressed size by 1.3%
if (!ops_.empty()) {
if (ops_.back() == COPY1) {
ops_.back() = COPY;
ok = copy_counts_.push_back(1);
}
if (ok && ops_.back() == COPY) {
copy_counts_.back() += count;
for (size_t i = 0; ok && i < count; ++i) {
ok = copy_bytes_.push_back(source[i]);
}
return ok;
}
}
if (ok) {
if (count == 1) {
ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
} else {
ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
for (size_t i = 0; ok && i < count; ++i) {
ok = copy_bytes_.push_back(source[i]);
}
}
}
return ok;
}
CheckBool EncodedProgram::AddAbs32(int label_index) {
return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddAbs64(int label_index) {
return ops_.push_back(ABS64) && abs32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddRel32(int label_index) {
return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
}
CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
if (kind == EXE_WIN_32_X86)
return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
}
CheckBool EncodedProgram::AddElfMakeRelocs() {
return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
}
void EncodedProgram::DebuggingSummary() {
VLOG(1) << "EncodedProgram Summary"
<< "\n image base " << image_base_
<< "\n abs32 rvas " << abs32_rva_.size()
<< "\n rel32 rvas " << rel32_rva_.size()
<< "\n ops " << ops_.size()
<< "\n origins " << origins_.size()
<< "\n copy_counts " << copy_counts_.size()
<< "\n copy_bytes " << copy_bytes_.size()
<< "\n abs32_ix " << abs32_ix_.size()
<< "\n rel32_ix " << rel32_ix_.size();
}
////////////////////////////////////////////////////////////////////////////////
// For algorithm refinement purposes it is useful to write subsets of the file
// format. This gives us the ability to estimate the entropy of the
// differential compression of the individual streams, which can provide
// invaluable insights. The default, of course, is to include all the streams.
//
enum FieldSelect {
INCLUDE_ABS32_ADDRESSES = 0x0001,
INCLUDE_REL32_ADDRESSES = 0x0002,
INCLUDE_ABS32_INDEXES = 0x0010,
INCLUDE_REL32_INDEXES = 0x0020,
INCLUDE_OPS = 0x0100,
INCLUDE_BYTES = 0x0200,
INCLUDE_COPY_COUNTS = 0x0400,
INCLUDE_MISC = 0x1000
};
static FieldSelect GetFieldSelect() {
// TODO(sra): Use better configuration.
std::unique_ptr<base::Environment> env(base::Environment::Create());
std::string s;
env->GetVar("A_FIELDS", &s);
uint64_t fields;
if (!base::StringToUint64(s, &fields))
return static_cast<FieldSelect>(~0);
return static_cast<FieldSelect>(fields);
}
CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
FieldSelect select = GetFieldSelect();
// The order of fields must be consistent in WriteTo and ReadFrom, regardless
// of the streams used. The code can be configured with all kStreamXXX
// constants the same.
//
// If we change the code to pipeline reading with assembly (to avoid temporary
// storage vectors by consuming operands directly from the stream) then we
// need to read the base address and the random access address tables first,
// the rest can be interleaved.
if (select & INCLUDE_MISC) {
uint32_t high = static_cast<uint32_t>(image_base_ >> 32);
uint32_t low = static_cast<uint32_t>(image_base_ & 0xffffffffU);
if (!streams->stream(kStreamMisc)->WriteVarint32(high) ||
!streams->stream(kStreamMisc)->WriteVarint32(low)) {
return false;
}
}
bool success = true;
if (select & INCLUDE_ABS32_ADDRESSES) {
success &= WriteSigned32Delta(abs32_rva_,
streams->stream(kStreamAbs32Addresses));
}
if (select & INCLUDE_REL32_ADDRESSES) {
success &= WriteSigned32Delta(rel32_rva_,
streams->stream(kStreamRel32Addresses));
}
if (select & INCLUDE_MISC)
success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
if (select & INCLUDE_OPS) {
// 5 for length.
success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
success &= WriteVector(ops_, streams->stream(kStreamOps));
}
if (select & INCLUDE_COPY_COUNTS)
success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
if (select & INCLUDE_BYTES)
success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
if (select & INCLUDE_ABS32_INDEXES)
success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
if (select & INCLUDE_REL32_INDEXES)
success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
return success;
}
bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
uint32_t high;
uint32_t low;
if (!streams->stream(kStreamMisc)->ReadVarint32(&high) ||
!streams->stream(kStreamMisc)->ReadVarint32(&low)) {
return false;
}
image_base_ = (static_cast<uint64_t>(high) << 32) | low;
if (!ReadSigned32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
return false;
if (!ReadSigned32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
return false;
if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
return false;
if (!ReadVector(&ops_, streams->stream(kStreamOps)))
return false;
if (!ReadVector(©_counts_, streams->stream(kStreamCopyCounts)))
return false;
if (!ReadVectorU8(©_bytes_, streams->stream(kStreamBytes)))
return false;
if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
return false;
if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
return false;
// Check that streams have been completely consumed.
for (int i = 0; i < kStreamLimit; ++i) {
if (streams->stream(i)->Remaining() > 0)
return false;
}
return true;
}
// Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
// 'false' for out-of-bounds index error.
template<typename V, typename T>
bool VectorAt(const V& v, size_t index, T* output) {
if (index >= v.size())
return false;
*output = v[index];
return true;
}
CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
// For the most part, the assembly process walks the various tables.
// ix_mumble is the index into the mumble table.
size_t ix_origins = 0;
size_t ix_copy_counts = 0;
size_t ix_copy_bytes = 0;
size_t ix_abs32_ix = 0;
size_t ix_rel32_ix = 0;
RVA current_rva = 0;
bool pending_pe_relocation_table = false;
uint8_t pending_pe_relocation_table_type = 0x03; // IMAGE_REL_BASED_HIGHLOW
Elf32_Word pending_elf_relocation_table_type = 0;
SinkStream bytes_following_relocation_table;
SinkStream* output = final_buffer;
for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
OP op = ops_[ix_ops];
switch (op) {
default:
return false;
case ORIGIN: {
RVA section_rva;
if (!VectorAt(origins_, ix_origins, §ion_rva))
return false;
++ix_origins;
current_rva = section_rva;
break;
}
case COPY: {
size_t count;
if (!VectorAt(copy_counts_, ix_copy_counts, &count))
return false;
++ix_copy_counts;
for (size_t i = 0; i < count; ++i) {
uint8_t b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
if (!output->Write(&b, 1))
return false;
}
current_rva += static_cast<RVA>(count);
break;
}
case COPY1: {
uint8_t b;
if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
return false;
++ix_copy_bytes;
if (!output->Write(&b, 1))
return false;
current_rva += 1;
break;
}
case REL32: {
uint32_t index;
if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
return false;
++ix_rel32_ix;
RVA rva;
if (!VectorAt(rel32_rva_, index, &rva))
return false;
uint32_t offset = (rva - (current_rva + 4));
if (!output->Write(&offset, 4))
return false;
current_rva += 4;
break;
}
case ABS32:
case ABS64: {
uint32_t index;
if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
return false;
++ix_abs32_ix;
RVA rva;
if (!VectorAt(abs32_rva_, index, &rva))
return false;
if (op == ABS32) {
base::CheckedNumeric<uint32_t> abs32 = image_base_;
abs32 += rva;
uint32_t safe_abs32 = abs32.ValueOrDie();
if (!abs32_relocs_.push_back(current_rva) ||
!output->Write(&safe_abs32, 4)) {
return false;
}
current_rva += 4;
} else {
base::CheckedNumeric<uint64_t> abs64 = image_base_;
abs64 += rva;
uint64_t safe_abs64 = abs64.ValueOrDie();
if (!abs32_relocs_.push_back(current_rva) ||
!output->Write(&safe_abs64, 8)) {
return false;
}
current_rva += 8;
}
break;
}
case MAKE_PE_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_pe_relocation_table)
return false; // Can't have two base relocation tables.
pending_pe_relocation_table = true;
output = &bytes_following_relocation_table;
break;
// There is a potential problem *if* the instruction stream contains
// some REL32 relocations following the base relocation and in the same
// section. We don't know the size of the table, so 'current_rva' will
// be wrong, causing REL32 offsets to be miscalculated. This never
// happens; the base relocation table is usually in a section of its
// own, a data-only section, and following everything else in the
// executable except some padding zero bytes. We could fix this by
// emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
}
case MAKE_PE64_RELOCATION_TABLE: {
if (pending_pe_relocation_table)
return false; // Can't have two base relocation tables.
pending_pe_relocation_table = true;
pending_pe_relocation_table_type = 0x0A; // IMAGE_REL_BASED_DIR64
output = &bytes_following_relocation_table;
break;
}
case MAKE_ELF_RELOCATION_TABLE: {
// We can see the base relocation anywhere, but we only have the
// information to generate it at the very end. So we divert the bytes
// we are generating to a temporary stream.
if (pending_elf_relocation_table_type)
return false; // Can't have two base relocation tables.
pending_elf_relocation_table_type = R_386_RELATIVE;
output = &bytes_following_relocation_table;
break;
}
}
}
if (pending_pe_relocation_table) {
if (!GeneratePeRelocations(final_buffer,
pending_pe_relocation_table_type) ||
!final_buffer->Append(&bytes_following_relocation_table))
return false;
}
if (pending_elf_relocation_table_type) {
if (!GenerateElfRelocations(pending_elf_relocation_table_type,
final_buffer) ||
!final_buffer->Append(&bytes_following_relocation_table))
return false;
}
// Final verification check: did we consume all lists?
if (ix_copy_counts != copy_counts_.size())
return false;
if (ix_copy_bytes != copy_bytes_.size())
return false;
if (ix_abs32_ix != abs32_ix_.size())
return false;
if (ix_rel32_ix != rel32_ix_.size())
return false;
return true;
}
CheckBool EncodedProgram::GenerateInstructions(
ExecutableType exe_type,
const InstructionGenerator& gen) {
InstructionStoreReceptor store_receptor(exe_type, this);
return gen.Run(&store_receptor);
}
// RelocBlock has the layout of a block of relocations in the base relocation
// table file format.
struct RelocBlockPOD {
uint32_t page_rva;
uint32_t block_size;
uint16_t relocs[4096]; // Allow up to one relocation per byte of a 4k page.
};
static_assert(offsetof(RelocBlockPOD, relocs) == 8, "reloc block header size");
class RelocBlock {
public:
RelocBlock() {
pod.page_rva = 0xFFFFFFFF;
pod.block_size = 8;
}
void Add(uint16_t item) {
pod.relocs[(pod.block_size-8)/2] = item;
pod.block_size += 2;
}
[[nodiscard]] CheckBool Flush(SinkStream* buffer) {
bool ok = true;
if (pod.block_size != 8) {
if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
Add(0);
}
ok = buffer->Write(&pod, pod.block_size);
pod.block_size = 8;
}
return ok;
}
RelocBlockPOD pod;
};
// static
// Updates |rvas| so |rvas[label.index_] == label.rva_| for each |label| in
// |label_manager|, assuming |label.index_| is properly assigned. Takes care of
// |rvas| resizing. Unused slots in |rvas| are assigned |kUnassignedRVA|.
// Returns true on success, and false otherwise.
CheckBool EncodedProgram::WriteRvasToList(const LabelManager& label_manager,
RvaVector* rvas) {
rvas->clear();
int index_bound = LabelManager::GetLabelIndexBound(label_manager.Labels());
if (!rvas->resize(index_bound, kUnassignedRVA))
return false;
// For each Label, write its RVA to assigned index.
for (const Label& label : label_manager.Labels()) {
DCHECK_NE(label.index_, Label::kNoIndex);
DCHECK_EQ((*rvas)[label.index_], kUnassignedRVA)
<< "ExportToList() double assigned " << label.index_;
(*rvas)[label.index_] = label.rva_;
}
return true;
}
// static
// Replaces all unassigned slots in |rvas| with the value at the previous index
// so they delta-encode to zero. (There might be better values than zero. The
// way to get that is have the higher level assembly program assign the
// unassigned slots.)
void EncodedProgram::FillUnassignedRvaSlots(RvaVector* rvas) {
RVA previous = 0;
for (RVA& rva : *rvas) {
if (rva == kUnassignedRVA)
rva = previous;
else
previous = rva;
}
}
CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
uint8_t type) {
std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA);
RelocBlock block;
bool ok = true;
for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
uint32_t rva = abs32_relocs_[i];
uint32_t page_rva = rva & ~0xFFF;
if (page_rva != block.pod.page_rva) {
ok &= block.Flush(buffer);
block.pod.page_rva = page_rva;
}
if (ok)
block.Add(((static_cast<uint16_t>(type)) << 12) | (rva & 0xFFF));
}
ok &= block.Flush(buffer);
return ok;
}
CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
SinkStream* buffer) {
std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
DCHECK(abs32_relocs_.empty() || abs32_relocs_.back() != kUnassignedRVA);
Elf32_Rel relocation_block;
relocation_block.r_info = r_info;
bool ok = true;
for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
relocation_block.r_offset = abs32_relocs_[i];
ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
}
return ok;
}
////////////////////////////////////////////////////////////////////////////////
Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
if (!encoded->WriteTo(sink))
return C_STREAM_ERROR;
return C_OK;
}
Status ReadEncodedProgram(SourceStreamSet* streams,
std::unique_ptr<EncodedProgram>* output) {
output->reset();
std::unique_ptr<EncodedProgram> encoded(new EncodedProgram());
if (!encoded->ReadFrom(streams))
return C_DESERIALIZATION_FAILED;
*output = std::move(encoded);
return C_OK;
}
Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
bool assembled = encoded->AssembleTo(buffer);
if (assembled)
return C_OK;
return C_ASSEMBLY_FAILED;
}
} // namespace courgette
|