1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/label_manager.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include "base/check.h"
#include "base/check_op.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "courgette/consecutive_range_visitor.h"
namespace courgette {
LabelManager::SimpleIndexAssigner::SimpleIndexAssigner(LabelVector* labels)
: labels_(labels) {
// Initialize |num_index_| and |available_|.
num_index_ = std::max(base::checked_cast<int>(labels_->size()),
GetLabelIndexBound(*labels_));
available_.resize(num_index_, true);
size_t used = 0;
for (const Label& label : *labels_) {
if (label.index_ != Label::kNoIndex) {
available_.at(label.index_) = false;
++used;
}
}
VLOG(1) << used << " of " << labels_->size() << " labels pre-assigned.";
}
LabelManager::SimpleIndexAssigner::~SimpleIndexAssigner() = default;
void LabelManager::SimpleIndexAssigner::DoForwardFill() {
size_t count = 0;
// Inside the loop, if |prev_index| == |kNoIndex| then we try to assign 0.
// This allows 0 (if unused) to be assigned in middle of |labels_|.
int prev_index = Label::kNoIndex;
for (auto p = labels_->begin(); p != labels_->end(); ++p) {
if (p->index_ == Label::kNoIndex) {
int index = (prev_index == Label::kNoIndex) ? 0 : prev_index + 1;
if (index < num_index_ && available_.at(index)) {
p->index_ = index;
available_.at(index) = false;
++count;
}
}
prev_index = p->index_;
}
VLOG(1) << " fill forward " << count;
}
void LabelManager::SimpleIndexAssigner::DoBackwardFill() {
size_t count = 0;
// This is asymmetric from DoForwardFill(), to preserve old behavior.
// Inside the loop, if |prev_index| == |kNoIndex| then we skip assignment.
// But we initilaize |prev_index| = |num_index_|, so if the last element in
// |labels_| has no index, then can use |num_index_| - 1 (if unused). We don't
// try this assignment elsewhere.
int prev_index = num_index_;
for (auto p = labels_->rbegin(); p != labels_->rend(); ++p) {
if (p->index_ == Label::kNoIndex && prev_index != Label::kNoIndex) {
int index = prev_index - 1;
if (index >= 0 && available_.at(index)) {
p->index_ = index;
available_.at(index) = false;
++count;
}
}
prev_index = p->index_;
}
VLOG(1) << " fill backward " << count;
}
void LabelManager::SimpleIndexAssigner::DoInFill() {
size_t count = 0;
int index = 0;
for (Label& label : *labels_) {
if (label.index_ == Label::kNoIndex) {
while (!available_.at(index))
++index;
label.index_ = index;
available_.at(index) = false;
++index;
++count;
}
}
VLOG(1) << " infill " << count;
}
LabelManager::LabelManager() = default;
LabelManager::~LabelManager() = default;
// static
int LabelManager::GetLabelIndexBound(const LabelVector& labels) {
int max_index = -1;
for (const Label& label : labels) {
if (label.index_ != Label::kNoIndex)
max_index = std::max(max_index, label.index_);
}
return max_index + 1;
}
// Uses binary search to find |rva|.
Label* LabelManager::Find(RVA rva) {
auto it = std::lower_bound(
labels_.begin(), labels_.end(), Label(rva),
[](const Label& l1, const Label& l2) { return l1.rva_ < l2.rva_; });
return it == labels_.end() || it->rva_ != rva ? nullptr : &(*it);
}
void LabelManager::UnassignIndexes() {
for (Label& label : labels_)
label.index_ = Label::kNoIndex;
}
void LabelManager::DefaultAssignIndexes() {
int cur_index = 0;
for (Label& label : labels_) {
CHECK_EQ(Label::kNoIndex, label.index_);
label.index_ = cur_index++;
}
}
void LabelManager::AssignRemainingIndexes() {
// This adds some memory overhead, about 1 bit per Label (more if indexes >=
// |labels_.size()| get used).
SimpleIndexAssigner assigner(&labels_);
assigner.DoForwardFill();
assigner.DoBackwardFill();
assigner.DoInFill();
}
// We wish to minimize peak memory usage here. Analysis: Let
// m = number of (RVA) elements in |rva_visitor|,
// n = number of distinct (RVA) elements in |rva_visitor|.
// The final storage is n * sizeof(Label) bytes. During computation we uniquify
// m RVAs, and count repeats. Taking sizeof(RVA) = 4, an implementation using
// std::map or std::unordered_map would consume additionally 32 * n bytes.
// Meanwhile, our std::vector implementation consumes additionally 4 * m bytes
// For our typical usage (i.e. Chrome) we see m = ~4n, so we use 16 * n bytes of
// extra contiguous memory during computation. Assuming memory fragmentation
// would not be an issue, this is much better than using std::map.
void LabelManager::Read(RvaVisitor* rva_visitor) {
// Write all values in |rva_visitor| to |rvas|.
size_t num_rva = rva_visitor->Remaining();
std::vector<RVA> rvas(num_rva);
for (size_t i = 0; i < num_rva; ++i, rva_visitor->Next())
rvas[i] = rva_visitor->Get();
// Sort |rvas|, then count the number of distinct values.
using CRV = ConsecutiveRangeVisitor<std::vector<RVA>::iterator>;
std::sort(rvas.begin(), rvas.end());
DCHECK(rvas.empty() || rvas.back() != kUnassignedRVA);
size_t num_distinct_rva = 0;
for (CRV it(rvas.begin(), rvas.end()); it.has_more(); it.advance())
++num_distinct_rva;
// Reserve space for |labels_|, populate with sorted RVA and repeats.
DCHECK(labels_.empty());
labels_.reserve(num_distinct_rva);
for (CRV it(rvas.begin(), rvas.end()); it.has_more(); it.advance()) {
labels_.push_back(Label(*it.cur()));
labels_.back().count_ =
base::checked_cast<decltype(labels_.back().count_)>(it.repeat());
}
}
} // namespace courgette
|