1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Streams classes.
//
// These memory-resident streams are used for serializing data into a sequential
// region of memory.
//
// Streams are divided into SourceStreams for reading and SinkStreams for
// writing. Streams are aggregated into Sets which allows several streams to be
// used at once. Example: we can write A1, B1, A2, B2 but achieve the memory
// layout A1 A2 B1 B2 by writing 'A's to one stream and 'B's to another.
//
// The aggregated streams are important to Courgette's compression efficiency,
// we use it to cluster similar kinds of data which helps to generate longer
// common subsequences and repeated sequences.
#include "courgette/streams.h"
#include <memory.h>
#include <stddef.h>
#include <stdint.h>
#include "base/logging.h"
namespace courgette {
// Update this version number if the serialization format of a StreamSet
// changes.
static const unsigned int kStreamsSerializationFormatVersion = 20090218;
//
// This is a cut down Varint implementation, implementing only what we use for
// streams.
//
class Varint {
public:
// Maximum lengths of varint encoding of uint32_t
static const int kMax32 = 5;
// Parses a Varint32 encoded value from |source| and stores it in |output|,
// and returns a pointer to the following byte. Returns nullptr if a valid
// varint value was not found before |limit|.
static const uint8_t* Parse32WithLimit(const uint8_t* source,
const uint8_t* limit,
uint32_t* output);
// Writes the Varint32 encoded representation of |value| to buffer
// |destination|. |destination| must have sufficient length to hold kMax32
// bytes. Returns a pointer to the byte just past the last encoded byte.
static uint8_t* Encode32(uint8_t* destination, uint32_t value);
};
// Parses a Varint32 encoded unsigned number from |source|. The Varint32
// encoding is a little-endian sequence of bytes containing base-128 digits,
// with the high order bit set to indicate if there are more digits.
//
// For each byte, we mask out the digit and 'or' it into the right place in the
// result.
//
// The digit loop is unrolled for performance. It usually exits after the first
// one or two digits.
const uint8_t* Varint::Parse32WithLimit(const uint8_t* source,
const uint8_t* limit,
uint32_t* output) {
uint32_t digit, result;
if (source >= limit)
return nullptr;
digit = *(source++);
result = digit & 127;
if (digit < 128) {
*output = result;
return source;
}
if (source >= limit)
return nullptr;
digit = *(source++);
result |= (digit & 127) << 7;
if (digit < 128) {
*output = result;
return source;
}
if (source >= limit)
return nullptr;
digit = *(source++);
result |= (digit & 127) << 14;
if (digit < 128) {
*output = result;
return source;
}
if (source >= limit)
return nullptr;
digit = *(source++);
result |= (digit & 127) << 21;
if (digit < 128) {
*output = result;
return source;
}
if (source >= limit)
return nullptr;
digit = *(source++);
result |= (digit & 127) << 28;
if (digit < 128) {
*output = result;
return source;
}
return nullptr; // Value is too long to be a Varint32.
}
// Write the base-128 digits in little-endian order. All except the last digit
// have the high bit set to indicate more digits.
inline uint8_t* Varint::Encode32(uint8_t* destination, uint32_t value) {
while (value >= 128) {
*(destination++) = static_cast<uint8_t>(value) | 128;
value = value >> 7;
}
*(destination++) = static_cast<uint8_t>(value);
return destination;
}
void SourceStream::Init(const SinkStream& sink) {
Init(sink.Buffer(), sink.Length());
}
bool SourceStream::Read(void* destination, size_t count) {
if (current_ + count > end_)
return false;
memcpy(destination, current_, count);
current_ += count;
return true;
}
bool SourceStream::ReadVarint32(uint32_t* output_value) {
const uint8_t* after = Varint::Parse32WithLimit(current_, end_, output_value);
if (!after)
return false;
current_ = after;
return true;
}
bool SourceStream::ReadVarint32Signed(int32_t* output_value) {
// Signed numbers are encoded as unsigned numbers so that numbers nearer zero
// have shorter varint encoding.
// 0000xxxx encoded as 000xxxx0.
// 1111xxxx encoded as 000yyyy1 where yyyy is complement of xxxx.
uint32_t unsigned_value;
if (!ReadVarint32(&unsigned_value))
return false;
if (unsigned_value & 1)
*output_value = ~static_cast<int32_t>(unsigned_value >> 1);
else
*output_value = (unsigned_value >> 1);
return true;
}
bool SourceStream::ShareSubstream(size_t offset, size_t length,
SourceStream* substream) {
if (offset > Remaining())
return false;
if (length > Remaining() - offset)
return false;
substream->Init(current_ + offset, length);
return true;
}
bool SourceStream::ReadSubstream(size_t length, SourceStream* substream) {
if (!ShareSubstream(0, length, substream))
return false;
current_ += length;
return true;
}
bool SourceStream::Skip(size_t byte_count) {
if (current_ + byte_count > end_)
return false;
current_ += byte_count;
return true;
}
CheckBool SinkStream::Write(const void* data, size_t byte_count) {
return buffer_.append(static_cast<const char*>(data), byte_count);
}
CheckBool SinkStream::WriteVarint32(uint32_t value) {
uint8_t buffer[Varint::kMax32];
uint8_t* end = Varint::Encode32(buffer, value);
return Write(buffer, end - buffer);
}
CheckBool SinkStream::WriteVarint32Signed(int32_t value) {
// Encode signed numbers so that numbers nearer zero have shorter
// varint encoding.
// 0000xxxx encoded as 000xxxx0.
// 1111xxxx encoded as 000yyyy1 where yyyy is complement of xxxx.
bool ret;
if (value < 0)
ret = WriteVarint32(~value * 2 + 1);
else
ret = WriteVarint32(value * 2);
return ret;
}
CheckBool SinkStream::WriteSizeVarint32(size_t value) {
uint32_t narrowed_value = static_cast<uint32_t>(value);
// On 32-bit, the compiler should figure out this test always fails.
LOG_ASSERT(value == narrowed_value);
return WriteVarint32(narrowed_value);
}
CheckBool SinkStream::Append(SinkStream* other) {
bool ret = Write(other->buffer_.data(), other->buffer_.size());
if (ret)
other->Retire();
return ret;
}
void SinkStream::Retire() {
buffer_.clear();
}
////////////////////////////////////////////////////////////////////////////////
SourceStreamSet::SourceStreamSet()
: count_(kMaxStreams) {
}
SourceStreamSet::~SourceStreamSet() = default;
// Initializes from |source|.
// The stream set for N streams is serialized as a header
// <version><N><length1><length2>...<lengthN>
// followed by the stream contents
// <bytes1><bytes2>...<bytesN>
//
bool SourceStreamSet::Init(const void* source, size_t byte_count) {
const uint8_t* start = static_cast<const uint8_t*>(source);
const uint8_t* end = start + byte_count;
unsigned int version;
const uint8_t* finger = Varint::Parse32WithLimit(start, end, &version);
if (finger == nullptr)
return false;
if (version != kStreamsSerializationFormatVersion)
return false;
unsigned int count;
finger = Varint::Parse32WithLimit(finger, end, &count);
if (finger == nullptr)
return false;
if (count > kMaxStreams)
return false;
count_ = count;
unsigned int lengths[kMaxStreams];
size_t accumulated_length = 0;
for (size_t i = 0; i < count_; ++i) {
finger = Varint::Parse32WithLimit(finger, end, &lengths[i]);
if (finger == nullptr)
return false;
accumulated_length += lengths[i];
}
// Remaining bytes should add up to sum of lengths.
if (static_cast<size_t>(end - finger) != accumulated_length)
return false;
accumulated_length = finger - start;
for (size_t i = 0; i < count_; ++i) {
stream(i)->Init(start + accumulated_length, lengths[i]);
accumulated_length += lengths[i];
}
return true;
}
bool SourceStreamSet::Init(SourceStream* source) {
// TODO(sra): consume the rest of |source|.
return Init(source->Buffer(), source->Remaining());
}
bool SourceStreamSet::ReadSet(SourceStreamSet* set) {
uint32_t stream_count = 0;
SourceStream* control_stream = this->stream(0);
if (!control_stream->ReadVarint32(&stream_count))
return false;
uint32_t lengths[kMaxStreams] = {}; // i.e. all zero.
for (size_t i = 0; i < stream_count; ++i) {
if (!control_stream->ReadVarint32(&lengths[i]))
return false;
}
for (size_t i = 0; i < stream_count; ++i) {
if (!this->stream(i)->ReadSubstream(lengths[i], set->stream(i)))
return false;
}
return true;
}
bool SourceStreamSet::Empty() const {
for (size_t i = 0; i < count_; ++i) {
if (streams_[i].Remaining() != 0)
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
SinkStreamSet::SinkStreamSet()
: count_(kMaxStreams) {
}
SinkStreamSet::~SinkStreamSet() = default;
void SinkStreamSet::Init(size_t stream_index_limit) {
count_ = stream_index_limit;
}
// The header for a stream set for N streams is serialized as
// <version><N><length1><length2>...<lengthN>
CheckBool SinkStreamSet::CopyHeaderTo(SinkStream* header) {
bool ret = header->WriteVarint32(kStreamsSerializationFormatVersion);
if (ret) {
ret = header->WriteSizeVarint32(count_);
for (size_t i = 0; ret && i < count_; ++i) {
ret = header->WriteSizeVarint32(stream(i)->Length());
}
}
return ret;
}
// Writes |this| to |combined_stream|. See SourceStreamSet::Init for the layout
// of the stream metadata and contents.
CheckBool SinkStreamSet::CopyTo(SinkStream *combined_stream) {
SinkStream header;
bool ret = CopyHeaderTo(&header);
if (!ret)
return ret;
// Reserve the correct amount of storage.
size_t length = header.Length();
for (size_t i = 0; i < count_; ++i) {
length += stream(i)->Length();
}
ret = combined_stream->Reserve(length);
if (ret) {
ret = combined_stream->Append(&header);
for (size_t i = 0; ret && i < count_; ++i) {
ret = combined_stream->Append(stream(i));
}
}
return ret;
}
CheckBool SinkStreamSet::WriteSet(SinkStreamSet* set) {
uint32_t lengths[kMaxStreams];
// 'stream_count' includes all non-empty streams and all empty stream numbered
// lower than a non-empty stream.
size_t stream_count = 0;
for (size_t i = 0; i < kMaxStreams; ++i) {
SinkStream* stream = set->stream(i);
lengths[i] = static_cast<uint32_t>(stream->Length());
if (lengths[i] > 0)
stream_count = i + 1;
}
SinkStream* control_stream = this->stream(0);
bool ret = control_stream->WriteSizeVarint32(stream_count);
for (size_t i = 0; ret && i < stream_count; ++i) {
ret = control_stream->WriteSizeVarint32(lengths[i]);
}
for (size_t i = 0; ret && i < stream_count; ++i) {
ret = this->stream(i)->Append(set->stream(i));
}
return ret;
}
} // namespace
|