1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/aead.h"
#include <stddef.h>
#include <stdint.h>
#include <string>
#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
#include "third_party/boringssl/src/include/openssl/aes.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
namespace crypto {
Aead::Aead(AeadAlgorithm algorithm) {
EnsureOpenSSLInit();
switch (algorithm) {
case AES_128_CTR_HMAC_SHA256:
aead_ = EVP_aead_aes_128_ctr_hmac_sha256();
break;
case AES_256_GCM:
aead_ = EVP_aead_aes_256_gcm();
break;
case AES_256_GCM_SIV:
aead_ = EVP_aead_aes_256_gcm_siv();
break;
case CHACHA20_POLY1305:
aead_ = EVP_aead_chacha20_poly1305();
break;
}
}
Aead::~Aead() = default;
void Aead::Init(base::span<const uint8_t> key) {
DCHECK(!key_);
DCHECK_EQ(KeyLength(), key.size());
key_ = key;
}
static base::span<const uint8_t> ToSpan(std::string_view sp) {
return base::as_bytes(base::make_span(sp));
}
void Aead::Init(const std::string* key) {
Init(ToSpan(*key));
}
std::vector<uint8_t> Aead::Seal(
base::span<const uint8_t> plaintext,
base::span<const uint8_t> nonce,
base::span<const uint8_t> additional_data) const {
const size_t max_output_length =
EVP_AEAD_max_overhead(aead_) + plaintext.size();
CHECK(max_output_length >= plaintext.size());
std::vector<uint8_t> ret;
ret.resize(max_output_length);
size_t output_length;
CHECK(Seal(plaintext, nonce, additional_data, ret.data(), &output_length,
max_output_length));
ret.resize(output_length);
return ret;
}
bool Aead::Seal(std::string_view plaintext,
std::string_view nonce,
std::string_view additional_data,
std::string* ciphertext) const {
const size_t max_output_length =
EVP_AEAD_max_overhead(aead_) + plaintext.size();
CHECK(max_output_length + 1 >= plaintext.size());
uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
base::WriteInto(ciphertext, max_output_length + 1));
size_t output_length;
if (!Seal(ToSpan(plaintext), ToSpan(nonce), ToSpan(additional_data), out_ptr,
&output_length, max_output_length)) {
ciphertext->clear();
return false;
}
ciphertext->resize(output_length);
return true;
}
absl::optional<std::vector<uint8_t>> Aead::Open(
base::span<const uint8_t> ciphertext,
base::span<const uint8_t> nonce,
base::span<const uint8_t> additional_data) const {
const size_t max_output_length = ciphertext.size();
std::vector<uint8_t> ret;
ret.resize(max_output_length);
size_t output_length;
if (!Open(ciphertext, nonce, additional_data, ret.data(), &output_length,
max_output_length)) {
return absl::nullopt;
}
ret.resize(output_length);
return ret;
}
bool Aead::Open(std::string_view ciphertext,
std::string_view nonce,
std::string_view additional_data,
std::string* plaintext) const {
const size_t max_output_length = ciphertext.size();
CHECK(max_output_length + 1 > max_output_length);
uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
base::WriteInto(plaintext, max_output_length + 1));
size_t output_length;
if (!Open(ToSpan(ciphertext), ToSpan(nonce), ToSpan(additional_data), out_ptr,
&output_length, max_output_length)) {
plaintext->clear();
return false;
}
plaintext->resize(output_length);
return true;
}
size_t Aead::KeyLength() const {
return EVP_AEAD_key_length(aead_);
}
size_t Aead::NonceLength() const {
return EVP_AEAD_nonce_length(aead_);
}
bool Aead::Seal(base::span<const uint8_t> plaintext,
base::span<const uint8_t> nonce,
base::span<const uint8_t> additional_data,
uint8_t* out,
size_t* output_length,
size_t max_output_length) const {
DCHECK(key_);
DCHECK_EQ(NonceLength(), nonce.size());
bssl::ScopedEVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init(ctx.get(), aead_, key_->data(), key_->size(),
EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr) ||
!EVP_AEAD_CTX_seal(ctx.get(), out, output_length, max_output_length,
nonce.data(), nonce.size(), plaintext.data(),
plaintext.size(), additional_data.data(),
additional_data.size())) {
return false;
}
DCHECK_LE(*output_length, max_output_length);
return true;
}
bool Aead::Open(base::span<const uint8_t> plaintext,
base::span<const uint8_t> nonce,
base::span<const uint8_t> additional_data,
uint8_t* out,
size_t* output_length,
size_t max_output_length) const {
DCHECK(key_);
DCHECK_EQ(NonceLength(), nonce.size());
bssl::ScopedEVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init(ctx.get(), aead_, key_->data(), key_->size(),
EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr) ||
!EVP_AEAD_CTX_open(ctx.get(), out, output_length, max_output_length,
nonce.data(), nonce.size(), plaintext.data(),
plaintext.size(), additional_data.data(),
additional_data.size())) {
return false;
}
DCHECK_LE(*output_length, max_output_length);
return true;
}
} // namespace crypto
|