1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This code implements SPAKE2, a variant of EKE:
// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
#include "crypto/p224_spake.h"
#include <string.h>
#include <algorithm>
#include <string_view>
#include "base/check_op.h"
#include "base/logging.h"
#include "crypto/random.h"
#include "crypto/secure_util.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
namespace {
// The following two points (M and N in the protocol) are verifiable random
// points on the curve and can be generated with the following code:
// #include <stdint.h>
// #include <stdio.h>
// #include <string.h>
//
// #include <openssl/ec.h>
// #include <openssl/obj_mac.h>
// #include <openssl/sha.h>
//
// // Silence a presubmit.
// #define PRINTF printf
//
// static const char kSeed1[] = "P224 point generation seed (M)";
// static const char kSeed2[] = "P224 point generation seed (N)";
//
// void find_seed(const char* seed) {
// SHA256_CTX sha256;
// uint8_t digest[SHA256_DIGEST_LENGTH];
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, seed, strlen(seed));
// SHA256_Final(digest, &sha256);
//
// BIGNUM x, y;
// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
// EC_POINT* p = EC_POINT_new(p224);
//
// for (unsigned i = 0;; i++) {
// BN_init(&x);
// BN_bin2bn(digest, 28, &x);
//
// if (EC_POINT_set_compressed_coordinates_GFp(
// p224, p, &x, digest[28] & 1, NULL)) {
// BN_init(&y);
// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
// char* x_str = BN_bn2hex(&x);
// char* y_str = BN_bn2hex(&y);
// PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
// OPENSSL_free(x_str);
// OPENSSL_free(y_str);
// BN_free(&x);
// BN_free(&y);
// break;
// }
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, digest, sizeof(digest));
// SHA256_Final(digest, &sha256);
//
// BN_free(&x);
// }
//
// EC_POINT_free(p);
// EC_GROUP_free(p224);
// }
//
// int main() {
// find_seed(kSeed1);
// find_seed(kSeed2);
// return 0;
// }
const uint8_t kM_X962[1 + 28 + 28] = {
0x04, 0x4d, 0x48, 0xc8, 0xea, 0x8d, 0x23, 0x39, 0x2e, 0x07, 0xe8, 0x51,
0xfa, 0x6a, 0xa8, 0x20, 0x48, 0x09, 0x4e, 0x05, 0x13, 0x72, 0x49, 0x9c,
0x6f, 0xba, 0x62, 0xa7, 0x4b, 0x6c, 0x18, 0x5c, 0xab, 0xd5, 0x2e, 0x2e,
0x8a, 0x9e, 0x2d, 0x21, 0xb0, 0xec, 0x4e, 0xe1, 0x41, 0x21, 0x1f, 0xe2,
0x9d, 0x64, 0xea, 0x4d, 0x04, 0x46, 0x3a, 0xe8, 0x33,
};
const uint8_t kN_X962[1 + 28 + 28] = {
0x04, 0x0b, 0x1c, 0xfc, 0x6a, 0x40, 0x7c, 0xdc, 0xb1, 0x5d, 0xc1, 0x70,
0x4c, 0xd1, 0x3e, 0xda, 0xab, 0x8f, 0xde, 0xff, 0x8c, 0xfb, 0xfb, 0x50,
0xd2, 0xc8, 0x1d, 0xe2, 0xc2, 0x3e, 0x14, 0xf6, 0x29, 0x96, 0x08, 0x09,
0x07, 0xb5, 0x6d, 0xd2, 0x82, 0x07, 0x1a, 0xa7, 0xa1, 0x21, 0xc3, 0x99,
0x34, 0xbc, 0x30, 0xda, 0x5b, 0xcb, 0xc6, 0xa3, 0xcc,
};
// ToBignum returns |big_endian_bytes| interpreted as a big-endian number.
bssl::UniquePtr<BIGNUM> ToBignum(base::span<const uint8_t> big_endian_bytes) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
CHECK(BN_bin2bn(big_endian_bytes.data(), big_endian_bytes.size(), bn.get()));
return bn;
}
// GetPoint decodes and returns the given X.962-encoded point. It will crash if
// |x962| is not a valid P-224 point.
bssl::UniquePtr<EC_POINT> GetPoint(
const EC_GROUP* p224,
base::span<const uint8_t, 1 + 28 + 28> x962) {
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p224));
CHECK(EC_POINT_oct2point(p224, point.get(), x962.data(), x962.size(),
/*ctx=*/nullptr));
return point;
}
// GetMask returns (M|N)**pw, where the choice of M or N is controlled by
// |use_m|.
bssl::UniquePtr<EC_POINT> GetMask(const EC_GROUP* p224,
bool use_m,
base::span<const uint8_t> pw) {
bssl::UniquePtr<EC_POINT> MN(GetPoint(p224, use_m ? kM_X962 : kN_X962));
bssl::UniquePtr<EC_POINT> MNpw(EC_POINT_new(p224));
bssl::UniquePtr<BIGNUM> pw_bn(ToBignum(pw));
CHECK(EC_POINT_mul(p224, MNpw.get(), nullptr, MN.get(), pw_bn.get(),
/*ctx=*/nullptr));
return MNpw;
}
// ToMessage serialises |in| as a 56-byte string that contains the big-endian
// representations of x and y, or is all zeros if |in| is infinity.
std::string ToMessage(const EC_GROUP* p224, const EC_POINT* in) {
if (EC_POINT_is_at_infinity(p224, in)) {
return std::string(28 + 28, 0);
}
uint8_t x962[1 + 28 + 28];
CHECK(EC_POINT_point2oct(p224, in, POINT_CONVERSION_UNCOMPRESSED, x962,
sizeof(x962), /*ctx=*/nullptr) == sizeof(x962));
return std::string(reinterpret_cast<const char*>(&x962[1]), sizeof(x962) - 1);
}
// FromMessage converts a message, as generated by |ToMessage|, into a point. It
// returns |nullptr| if the input is invalid or not on the curve.
bssl::UniquePtr<EC_POINT> FromMessage(const EC_GROUP* p224,
std::string_view in) {
if (in.size() != 56) {
return nullptr;
}
uint8_t x962[1 + 56];
x962[0] = 4;
memcpy(&x962[1], in.data(), sizeof(x962) - 1);
bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(p224));
if (!EC_POINT_oct2point(p224, ret.get(), x962, sizeof(x962),
/*ctx=*/nullptr)) {
return nullptr;
}
return ret;
}
} // anonymous namespace
namespace crypto {
P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
std::string_view password)
: state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
memset(&x_, 0, sizeof(x_));
memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
// x_ is a random scalar.
RandBytes(x_, sizeof(x_));
// Calculate |password| hash to get SPAKE password value.
SHA256HashString(std::string(password.data(), password.length()),
pw_, sizeof(pw_));
Init();
}
void P224EncryptedKeyExchange::Init() {
// X = g**x_
const EC_GROUP* p224 = EC_group_p224();
bssl::UniquePtr<EC_POINT> X(EC_POINT_new(p224));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
// x_bn may be >= the order, but |EC_POINT_mul| handles that. It doesn't do so
// in constant-time, but the these values are locally generated and so this
// occurs with negligible probability. (Same with |pw_|, just below.)
CHECK(EC_POINT_mul(p224, X.get(), x_bn.get(), nullptr, nullptr,
/*ctx=*/nullptr));
// The client masks the Diffie-Hellman value, X, by adding M**pw and the
// server uses N**pw.
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224, !is_server_, pw_));
// X* = X + (N|M)**pw
bssl::UniquePtr<EC_POINT> Xstar(EC_POINT_new(p224));
CHECK(EC_POINT_add(p224, Xstar.get(), X.get(), MNpw.get(),
/*ctx=*/nullptr));
next_message_ = ToMessage(p224, Xstar.get());
}
const std::string& P224EncryptedKeyExchange::GetNextMessage() {
if (state_ == kStateInitial) {
state_ = kStateRecvDH;
return next_message_;
} else if (state_ == kStateSendHash) {
state_ = kStateRecvHash;
return next_message_;
}
LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
" bad state " << state_;
next_message_ = "";
return next_message_;
}
P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
std::string_view message) {
if (state_ == kStateRecvHash) {
// This is the final state of the protocol: we are reading the peer's
// authentication hash and checking that it matches the one that we expect.
if (message.size() != sizeof(expected_authenticator_)) {
error_ = "peer's hash had an incorrect size";
return kResultFailed;
}
if (!SecureMemEqual(message.data(), expected_authenticator_,
message.size())) {
error_ = "peer's hash had incorrect value";
return kResultFailed;
}
state_ = kStateDone;
return kResultSuccess;
}
if (state_ != kStateRecvDH) {
LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
" bad state " << state_;
error_ = "internal error";
return kResultFailed;
}
const EC_GROUP* p224 = EC_group_p224();
// Y* is the other party's masked, Diffie-Hellman value.
bssl::UniquePtr<EC_POINT> Ystar(FromMessage(p224, message));
if (!Ystar) {
error_ = "failed to parse peer's masked Diffie-Hellman value";
return kResultFailed;
}
// We calculate the mask value: (N|M)**pw
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224, is_server_, pw_));
// Y = Y* - (N|M)**pw
CHECK(EC_POINT_invert(p224, MNpw.get(), /*ctx=*/nullptr));
bssl::UniquePtr<EC_POINT> Y(EC_POINT_new(p224));
CHECK(EC_POINT_add(p224, Y.get(), Ystar.get(), MNpw.get(),
/*ctx=*/nullptr));
// K = Y**x_
bssl::UniquePtr<EC_POINT> K(EC_POINT_new(p224));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
CHECK(EC_POINT_mul(p224, K.get(), nullptr, Y.get(), x_bn.get(),
/*ctx=*/nullptr));
// If everything worked out, then K is the same for both parties.
key_ = ToMessage(p224, K.get());
std::string client_masked_dh, server_masked_dh;
if (is_server_) {
client_masked_dh = std::string(message);
server_masked_dh = next_message_;
} else {
client_masked_dh = next_message_;
server_masked_dh = std::string(message);
}
// Now we calculate the hashes that each side will use to prove to the other
// that they derived the correct value for K.
uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
client_hash);
CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
server_hash);
const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
next_message_ =
std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
memcpy(expected_authenticator_, their_hash, kSHA256Length);
state_ = kStateSendHash;
return kResultPending;
}
void P224EncryptedKeyExchange::CalculateHash(
PeerType peer_type,
const std::string& client_masked_dh,
const std::string& server_masked_dh,
const std::string& k,
uint8_t* out_digest) {
std::string hash_contents;
if (peer_type == kPeerTypeServer) {
hash_contents = "server";
} else {
hash_contents = "client";
}
hash_contents += client_masked_dh;
hash_contents += server_masked_dh;
hash_contents +=
std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
hash_contents += k;
SHA256HashString(hash_contents, out_digest, kSHA256Length);
}
const std::string& P224EncryptedKeyExchange::error() const {
return error_;
}
const std::string& P224EncryptedKeyExchange::GetKey() const {
DCHECK_EQ(state_, kStateDone);
return GetUnverifiedKey();
}
const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
// Key is already final when state is kStateSendHash. Subsequent states are
// used only for verification of the key. Some users may combine verification
// with sending verifiable data instead of |expected_authenticator_|.
DCHECK_GE(state_, kStateSendHash);
return key_;
}
void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
memset(&x_, 0, sizeof(x_));
memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
Init();
}
} // namespace crypto
|