1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// The tests in this file attempt to verify the following through simulation:
// a) That a server experiencing overload will actually benefit from the
// anti-DDoS throttling logic, i.e. that its traffic spike will subside
// and be distributed over a longer period of time;
// b) That "well-behaved" clients of a server under DDoS attack actually
// benefit from the anti-DDoS throttling logic; and
// c) That the approximate increase in "perceived downtime" introduced by
// anti-DDoS throttling for various different actual downtimes is what
// we expect it to be.
#include <stdarg.h>
#include <stddef.h>
#include <cmath>
#include <limits>
#include <memory>
#include <vector>
#include "base/environment.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/rand_util.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "extensions/renderer/extension_throttle_entry.h"
#include "extensions/renderer/extension_throttle_test_support.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::TimeTicks;
using net::BackoffEntry;
namespace extensions {
namespace {
// Set this variable in your environment if you want to see verbose results
// of the simulation tests.
const char kShowSimulationVariableName[] = "SHOW_SIMULATION_RESULTS";
// Prints output only if a given environment variable is set. We use this
// to not print any output for human evaluation when the test is run without
// supervision.
void VerboseOut(const char* format, ...) {
static bool have_checked_environment = false;
static bool should_print = false;
if (!have_checked_environment) {
have_checked_environment = true;
std::unique_ptr<base::Environment> env(base::Environment::Create());
if (env->HasVar(kShowSimulationVariableName))
should_print = true;
}
if (should_print) {
va_list arglist;
va_start(arglist, format);
vprintf(format, arglist);
va_end(arglist);
}
}
// A simple two-phase discrete time simulation. Actors are added in the order
// they should take action at every tick of the clock. Ticks of the clock
// are two-phase:
// - Phase 1 advances every actor's time to a new absolute time.
// - Phase 2 asks each actor to perform their action.
class DiscreteTimeSimulation {
public:
class Actor {
public:
virtual ~Actor() {}
virtual void AdvanceTime(const TimeTicks& absolute_time) = 0;
virtual void PerformAction() = 0;
};
DiscreteTimeSimulation() {}
DiscreteTimeSimulation(const DiscreteTimeSimulation&) = delete;
DiscreteTimeSimulation& operator=(const DiscreteTimeSimulation&) = delete;
// Adds an |actor| to the simulation. The client of the simulation maintains
// ownership of |actor| and must ensure its lifetime exceeds that of the
// simulation. Actors should be added in the order you wish for them to
// act at each tick of the simulation.
void AddActor(Actor* actor) { actors_.push_back(actor); }
// Runs the simulation for, pretending |time_between_ticks| passes from one
// tick to the next. The start time will be the current real time. The
// simulation will stop when the simulated duration is equal to or greater
// than |maximum_simulated_duration|.
void RunSimulation(const base::TimeDelta& maximum_simulated_duration,
const base::TimeDelta& time_between_ticks) {
TimeTicks start_time = TimeTicks();
TimeTicks now = start_time;
while ((now - start_time) <= maximum_simulated_duration) {
for (auto it = actors_.begin(); it != actors_.end(); ++it) {
(*it)->AdvanceTime(now);
}
for (auto it = actors_.begin(); it != actors_.end(); ++it) {
(*it)->PerformAction();
}
now += time_between_ticks;
}
}
private:
std::vector<Actor*> actors_;
};
// Represents a web server in a simulation of a server under attack by
// a lot of clients. Must be added to the simulation's list of actors
// after all |Requester| objects.
class Server : public DiscreteTimeSimulation::Actor {
public:
Server(int max_queries_per_tick, double request_drop_ratio)
: max_queries_per_tick_(max_queries_per_tick),
request_drop_ratio_(request_drop_ratio),
num_overloaded_ticks_remaining_(0),
num_current_tick_queries_(0),
num_overloaded_ticks_(0),
max_experienced_queries_per_tick_(0) {}
Server(const Server&) = delete;
Server& operator=(const Server&) = delete;
void SetDowntime(const TimeTicks& start_time,
const base::TimeDelta& duration) {
start_downtime_ = start_time;
end_downtime_ = start_time + duration;
}
void AdvanceTime(const TimeTicks& absolute_time) override {
now_ = absolute_time;
}
void PerformAction() override {
// We are inserted at the end of the actor's list, so all Requester
// instances have already done their bit.
if (num_current_tick_queries_ > max_experienced_queries_per_tick_)
max_experienced_queries_per_tick_ = num_current_tick_queries_;
if (num_current_tick_queries_ > max_queries_per_tick_) {
// We pretend the server fails for the next several ticks after it
// gets overloaded.
num_overloaded_ticks_remaining_ = 5;
++num_overloaded_ticks_;
} else if (num_overloaded_ticks_remaining_ > 0) {
--num_overloaded_ticks_remaining_;
}
requests_per_tick_.push_back(num_current_tick_queries_);
num_current_tick_queries_ = 0;
}
// This is called by Requester. It returns the response code from
// the server.
int HandleRequest() {
++num_current_tick_queries_;
if (!start_downtime_.is_null() && start_downtime_ < now_ &&
now_ < end_downtime_) {
// For the simulation measuring the increase in perceived
// downtime, it might be interesting to count separately the
// queries seen by the server (assuming a front-end reverse proxy
// is what actually serves up the 503s in this case) so that we could
// visualize the traffic spike seen by the server when it comes up,
// which would in many situations be ameliorated by the anti-DDoS
// throttling.
return 503;
}
if ((num_overloaded_ticks_remaining_ > 0 ||
num_current_tick_queries_ > max_queries_per_tick_) &&
base::RandDouble() < request_drop_ratio_) {
return 503;
}
return 200;
}
int num_overloaded_ticks() const { return num_overloaded_ticks_; }
int max_experienced_queries_per_tick() const {
return max_experienced_queries_per_tick_;
}
std::string VisualizeASCII(int terminal_width) {
// Account for | characters we place at left of graph.
terminal_width -= 1;
VerboseOut("Overloaded for %d of %d ticks.\n", num_overloaded_ticks_,
requests_per_tick_.size());
VerboseOut("Got maximum of %d requests in a tick.\n\n",
max_experienced_queries_per_tick_);
VerboseOut("Traffic graph:\n\n");
// Printing the graph like this is a bit overkill, but was very useful
// while developing the various simulations to see if they were testing
// the corner cases we want to simulate.
// Find the smallest number of whole ticks we need to group into a
// column that will let all ticks fit into the column width we have.
int num_ticks = requests_per_tick_.size();
double ticks_per_column_exact =
static_cast<double>(num_ticks) / static_cast<double>(terminal_width);
int ticks_per_column = std::ceil(ticks_per_column_exact);
DCHECK_GE(ticks_per_column * terminal_width, num_ticks);
// Sum up the column values.
int num_columns = num_ticks / ticks_per_column;
if (num_ticks % ticks_per_column)
++num_columns;
DCHECK_LE(num_columns, terminal_width);
std::unique_ptr<int[]> columns(new int[num_columns]);
for (int tx = 0; tx < num_ticks; ++tx) {
int cx = tx / ticks_per_column;
if (tx % ticks_per_column == 0)
columns[cx] = 0;
columns[cx] += requests_per_tick_[tx];
}
// Find the lowest integer divisor that will let the column values
// be represented in a graph of maximum height 50.
int max_value = 0;
for (int cx = 0; cx < num_columns; ++cx)
max_value = std::max(max_value, columns[cx]);
const int kNumRows = 50;
double row_divisor_exact = max_value / static_cast<double>(kNumRows);
int row_divisor = std::ceil(row_divisor_exact);
DCHECK_GE(row_divisor * kNumRows, max_value);
// To show the overload line, we calculate the appropriate value.
int overload_value = max_queries_per_tick_ * ticks_per_column;
// When num_ticks is not a whole multiple of ticks_per_column, the last
// column includes fewer ticks than the others. In this case, don't
// print it so that we don't show an inconsistent value.
int num_printed_columns = num_columns;
if (num_ticks % ticks_per_column)
--num_printed_columns;
// This is a top-to-bottom traversal of rows, left-to-right per row.
std::string output;
for (int rx = 0; rx < kNumRows; ++rx) {
int range_min = (kNumRows - rx) * row_divisor;
int range_max = range_min + row_divisor;
if (range_min == 0)
range_min = -1; // Make 0 values fit in the bottom range.
output.append("|");
for (int cx = 0; cx < num_printed_columns; ++cx) {
char block = ' ';
// Show the overload line.
if (range_min < overload_value && overload_value <= range_max)
block = '-';
// Preferentially, show the graph line.
if (range_min < columns[cx] && columns[cx] <= range_max)
block = '#';
output.append(1, block);
}
output.append("\n");
}
output.append("|");
output.append(num_printed_columns, '=');
return output;
}
private:
TimeTicks now_;
TimeTicks start_downtime_; // Can be 0 to say "no downtime".
TimeTicks end_downtime_;
const int max_queries_per_tick_;
const double request_drop_ratio_; // Ratio of requests to 503 when failing.
int num_overloaded_ticks_remaining_;
int num_current_tick_queries_;
int num_overloaded_ticks_;
int max_experienced_queries_per_tick_;
std::vector<int> requests_per_tick_;
};
// Mock throttler entry used by Requester class.
class MockExtensionThrottleEntry : public ExtensionThrottleEntry {
public:
MockExtensionThrottleEntry()
: ExtensionThrottleEntry(std::string()),
backoff_entry_(&backoff_policy_, &fake_clock_) {}
~MockExtensionThrottleEntry() override {}
const BackoffEntry* GetBackoffEntry() const override {
return &backoff_entry_;
}
BackoffEntry* GetBackoffEntry() override { return &backoff_entry_; }
TimeTicks ImplGetTimeNow() const override { return fake_clock_.NowTicks(); }
void SetFakeNow(const TimeTicks& fake_time) {
fake_clock_.set_now(fake_time);
}
private:
mutable TestTickClock fake_clock_;
BackoffEntry backoff_entry_;
};
// Registry of results for a class of |Requester| objects (e.g. attackers vs.
// regular clients).
class RequesterResults {
public:
RequesterResults()
: num_attempts_(0), num_successful_(0), num_failed_(0), num_blocked_(0) {}
void AddSuccess() {
++num_attempts_;
++num_successful_;
}
void AddFailure() {
++num_attempts_;
++num_failed_;
}
void AddBlocked() {
++num_attempts_;
++num_blocked_;
}
int num_attempts() const { return num_attempts_; }
int num_successful() const { return num_successful_; }
int num_failed() const { return num_failed_; }
int num_blocked() const { return num_blocked_; }
double GetBlockedRatio() {
DCHECK(num_attempts_);
return static_cast<double>(num_blocked_) /
static_cast<double>(num_attempts_);
}
double GetSuccessRatio() {
DCHECK(num_attempts_);
return static_cast<double>(num_successful_) /
static_cast<double>(num_attempts_);
}
void PrintResults(const char* class_description) {
if (num_attempts_ == 0) {
VerboseOut("No data for %s\n", class_description);
return;
}
VerboseOut("Requester results for %s\n", class_description);
VerboseOut(" %d attempts\n", num_attempts_);
VerboseOut(" %d successes\n", num_successful_);
VerboseOut(" %d 5xx responses\n", num_failed_);
VerboseOut(" %d requests blocked\n", num_blocked_);
VerboseOut(" %.2f success ratio\n", GetSuccessRatio());
VerboseOut(" %.2f blocked ratio\n", GetBlockedRatio());
VerboseOut("\n");
}
private:
int num_attempts_;
int num_successful_;
int num_failed_;
int num_blocked_;
};
// Represents an Requester in a simulated DDoS situation, that periodically
// requests a specific resource.
class Requester : public DiscreteTimeSimulation::Actor {
public:
Requester(std::unique_ptr<MockExtensionThrottleEntry> throttler_entry,
const base::TimeDelta& time_between_requests,
Server* server,
RequesterResults* results)
: throttler_entry_(std::move(throttler_entry)),
time_between_requests_(time_between_requests),
last_attempt_was_failure_(false),
server_(server),
results_(results) {
DCHECK(server_);
}
Requester(const Requester&) = delete;
Requester& operator=(const Requester&) = delete;
void AdvanceTime(const TimeTicks& absolute_time) override {
if (time_of_last_success_.is_null())
time_of_last_success_ = absolute_time;
throttler_entry_->SetFakeNow(absolute_time);
}
void PerformAction() override {
const auto current_jitter =
request_jitter_.is_zero()
? base::TimeDelta()
: base::RandTimeDelta(-request_jitter_, request_jitter_);
const base::TimeDelta effective_delay =
time_between_requests_ + current_jitter;
if (throttler_entry_->ImplGetTimeNow() - time_of_last_attempt_ >
effective_delay) {
if (!throttler_entry_->ShouldRejectRequest()) {
int status_code = server_->HandleRequest();
throttler_entry_->UpdateWithResponse(status_code);
if (status_code == 200) {
if (results_)
results_->AddSuccess();
if (last_attempt_was_failure_) {
last_downtime_duration_ =
throttler_entry_->ImplGetTimeNow() - time_of_last_success_;
}
time_of_last_success_ = throttler_entry_->ImplGetTimeNow();
last_attempt_was_failure_ = false;
} else {
if (results_)
results_->AddFailure();
last_attempt_was_failure_ = true;
}
} else {
if (results_)
results_->AddBlocked();
last_attempt_was_failure_ = true;
}
time_of_last_attempt_ = throttler_entry_->ImplGetTimeNow();
}
}
// Adds a delay until the first request, equal to a uniformly distributed
// value between now and now + max_delay.
void SetStartupJitter(const base::TimeDelta& max_delay) {
time_of_last_attempt_ = TimeTicks() + base::RandTimeDeltaUpTo(max_delay) -
time_between_requests_;
}
void SetRequestJitter(const base::TimeDelta& request_jitter) {
request_jitter_ = request_jitter;
}
base::TimeDelta last_downtime_duration() const {
return last_downtime_duration_;
}
private:
std::unique_ptr<MockExtensionThrottleEntry> throttler_entry_;
const base::TimeDelta time_between_requests_;
base::TimeDelta request_jitter_;
TimeTicks time_of_last_attempt_;
TimeTicks time_of_last_success_;
bool last_attempt_was_failure_;
base::TimeDelta last_downtime_duration_;
const raw_ptr<Server, ExperimentalRenderer> server_;
const raw_ptr<RequesterResults, ExperimentalRenderer>
results_; // May be nullptr.
};
void SimulateAttack(Server* server,
RequesterResults* attacker_results,
RequesterResults* client_results,
bool enable_throttling) {
const size_t kNumAttackers = 50;
const size_t kNumClients = 50;
DiscreteTimeSimulation simulation;
std::vector<std::unique_ptr<Requester>> requesters;
for (size_t i = 0; i < kNumAttackers; ++i) {
// Use a tiny time_between_requests so the attackers will ping the
// server at every tick of the simulation.
auto throttler_entry = std::make_unique<MockExtensionThrottleEntry>();
if (!enable_throttling)
throttler_entry->DisableBackoffThrottling();
Requester* attacker =
new Requester(std::move(throttler_entry), base::Milliseconds(1), server,
attacker_results);
attacker->SetStartupJitter(base::Seconds(120));
requesters.push_back(base::WrapUnique(attacker));
simulation.AddActor(attacker);
}
for (size_t i = 0; i < kNumClients; ++i) {
// Normal clients only make requests every 2 minutes, plus/minus 1 minute.
auto throttler_entry = std::make_unique<MockExtensionThrottleEntry>();
if (!enable_throttling)
throttler_entry->DisableBackoffThrottling();
Requester* client = new Requester(std::move(throttler_entry),
base::Minutes(2), server, client_results);
client->SetStartupJitter(base::Seconds(120));
client->SetRequestJitter(base::Minutes(1));
requesters.push_back(base::WrapUnique(client));
simulation.AddActor(client);
}
simulation.AddActor(server);
simulation.RunSimulation(base::Minutes(6), base::Seconds(1));
}
TEST(URLRequestThrottlerSimulation, HelpsInAttack) {
base::test::SingleThreadTaskEnvironment task_environment(
base::test::SingleThreadTaskEnvironment::MainThreadType::IO);
Server unprotected_server(30, 1.0);
RequesterResults unprotected_attacker_results;
RequesterResults unprotected_client_results;
Server protected_server(30, 1.0);
RequesterResults protected_attacker_results;
RequesterResults protected_client_results;
SimulateAttack(&unprotected_server, &unprotected_attacker_results,
&unprotected_client_results, false);
SimulateAttack(&protected_server, &protected_attacker_results,
&protected_client_results, true);
// These assert that the DDoS protection actually benefits the
// server. Manual inspection of the traffic graphs will show this
// even more clearly.
EXPECT_GT(unprotected_server.num_overloaded_ticks(),
protected_server.num_overloaded_ticks());
EXPECT_GT(unprotected_server.max_experienced_queries_per_tick(),
protected_server.max_experienced_queries_per_tick());
// These assert that the DDoS protection actually benefits non-malicious
// (and non-degenerate/accidentally DDoSing) users.
EXPECT_LT(protected_client_results.GetBlockedRatio(),
protected_attacker_results.GetBlockedRatio());
EXPECT_GT(protected_client_results.GetSuccessRatio(),
unprotected_client_results.GetSuccessRatio());
// The rest is just for optional manual evaluation of the results;
// in particular the traffic pattern is interesting.
VerboseOut("\nUnprotected server's results:\n\n");
VerboseOut(unprotected_server.VisualizeASCII(132).c_str());
VerboseOut("\n\n");
VerboseOut("Protected server's results:\n\n");
VerboseOut(protected_server.VisualizeASCII(132).c_str());
VerboseOut("\n\n");
unprotected_attacker_results.PrintResults(
"attackers attacking unprotected server.");
unprotected_client_results.PrintResults(
"normal clients making requests to unprotected server.");
protected_attacker_results.PrintResults(
"attackers attacking protected server.");
protected_client_results.PrintResults(
"normal clients making requests to protected server.");
}
// Returns the downtime perceived by the client, as a ratio of the
// actual downtime.
double SimulateDowntime(const base::TimeDelta& duration,
const base::TimeDelta& average_client_interval,
bool enable_throttling) {
base::TimeDelta time_between_ticks = duration / 200;
TimeTicks start_downtime = TimeTicks() + (duration / 2);
// A server that never rejects requests, but will go down for maintenance.
Server server(std::numeric_limits<int>::max(), 1.0);
server.SetDowntime(start_downtime, duration);
auto throttler_entry = std::make_unique<MockExtensionThrottleEntry>();
if (!enable_throttling)
throttler_entry->DisableBackoffThrottling();
Requester requester(std::move(throttler_entry), average_client_interval,
&server, nullptr);
requester.SetStartupJitter(duration / 3);
requester.SetRequestJitter(average_client_interval);
DiscreteTimeSimulation simulation;
simulation.AddActor(&requester);
simulation.AddActor(&server);
simulation.RunSimulation(duration * 2, time_between_ticks);
return static_cast<double>(
requester.last_downtime_duration().InMilliseconds()) /
static_cast<double>(duration.InMilliseconds());
}
TEST(URLRequestThrottlerSimulation, PerceivedDowntimeRatio) {
base::test::SingleThreadTaskEnvironment task_environment(
base::test::SingleThreadTaskEnvironment::MainThreadType::IO);
struct Stats {
// Expected interval that we expect the ratio of downtime when anti-DDoS
// is enabled and downtime when anti-DDoS is not enabled to fall within.
//
// The expected interval depends on two things: The exponential back-off
// policy encoded in ExtensionThrottleEntry, and the test or set of
// tests that the Stats object is tracking (e.g. a test where the client
// retries very rapidly on a very long downtime will tend to increase the
// number).
//
// To determine an appropriate new interval when parameters have changed,
// run the test a few times (you may have to Ctrl-C out of it after a few
// seconds) and choose an interval that the test converges quickly and
// reliably to. Then set the new interval, and run the test e.g. 20 times
// in succession to make sure it never takes an obscenely long time to
// converge to this interval.
double expected_min_increase;
double expected_max_increase;
size_t num_runs;
double total_ratio_unprotected;
double total_ratio_protected;
bool DidConverge(double* increase_ratio_out) {
double unprotected_ratio = total_ratio_unprotected / num_runs;
double protected_ratio = total_ratio_protected / num_runs;
double increase_ratio = protected_ratio / unprotected_ratio;
if (increase_ratio_out)
*increase_ratio_out = increase_ratio;
return expected_min_increase <= increase_ratio &&
increase_ratio <= expected_max_increase;
}
void ReportTrialResult(double increase_ratio) {
VerboseOut(
" Perceived downtime with throttling is %.4f times without.\n",
increase_ratio);
VerboseOut(" Test result after %d trials.\n", num_runs);
}
};
Stats global_stats = {1.08, 1.15};
struct Trial {
base::TimeDelta duration;
base::TimeDelta average_client_interval;
Stats stats;
void PrintTrialDescription() {
const double duration_minutes = duration / base::Minutes(1);
const double interval_minutes =
average_client_interval / base::Minutes(1);
VerboseOut("Trial with %.2f min downtime, avg. interval %.2f min.\n",
duration_minutes, interval_minutes);
}
};
// We don't set or check expected ratio intervals on individual
// experiments as this might make the test too fragile, but we
// print them out at the end for manual evaluation (we want to be
// able to make claims about the expected ratios depending on the
// type of behavior of the client and the downtime, e.g. the difference
// in behavior between a client making requests every few minutes vs.
// one that makes a request every 15 seconds).
Trial trials[] = {
{base::Seconds(10), base::Seconds(3)},
{base::Seconds(30), base::Seconds(7)},
{base::Minutes(5), base::Seconds(30)},
{base::Minutes(10), base::Seconds(20)},
{base::Minutes(20), base::Seconds(15)},
{base::Minutes(20), base::Seconds(50)},
{base::Minutes(30), base::Minutes(2)},
{base::Minutes(30), base::Minutes(5)},
{base::Minutes(40), base::Minutes(7)},
{base::Minutes(40), base::Minutes(2)},
{base::Minutes(40), base::Seconds(15)},
{base::Minutes(60), base::Minutes(7)},
{base::Minutes(60), base::Minutes(2)},
{base::Minutes(60), base::Seconds(15)},
{base::Minutes(80), base::Minutes(20)},
{base::Minutes(80), base::Minutes(3)},
{base::Minutes(80), base::Seconds(15)},
// Most brutal?
{base::Minutes(45), base::Milliseconds(500)},
};
// If things don't converge by the time we've done 100K trials, then
// clearly one or more of the expected intervals are wrong.
while (global_stats.num_runs < 100000) {
for (size_t i = 0; i < std::size(trials); ++i) {
++global_stats.num_runs;
++trials[i].stats.num_runs;
double ratio_unprotected = SimulateDowntime(
trials[i].duration, trials[i].average_client_interval, false);
double ratio_protected = SimulateDowntime(
trials[i].duration, trials[i].average_client_interval, true);
global_stats.total_ratio_unprotected += ratio_unprotected;
global_stats.total_ratio_protected += ratio_protected;
trials[i].stats.total_ratio_unprotected += ratio_unprotected;
trials[i].stats.total_ratio_protected += ratio_protected;
}
double increase_ratio;
if (global_stats.DidConverge(&increase_ratio))
break;
if (global_stats.num_runs > 200) {
VerboseOut("Test has not yet converged on expected interval.\n");
global_stats.ReportTrialResult(increase_ratio);
}
}
double average_increase_ratio;
EXPECT_TRUE(global_stats.DidConverge(&average_increase_ratio));
// Print individual trial results for optional manual evaluation.
double max_increase_ratio = 0.0;
for (size_t i = 0; i < std::size(trials); ++i) {
double increase_ratio;
trials[i].stats.DidConverge(&increase_ratio);
max_increase_ratio = std::max(max_increase_ratio, increase_ratio);
trials[i].PrintTrialDescription();
trials[i].stats.ReportTrialResult(increase_ratio);
}
VerboseOut("Average increase ratio was %.4f\n", average_increase_ratio);
VerboseOut("Maximum increase ratio was %.4f\n", max_increase_ratio);
}
} // namespace
} // namespace extensions
|