1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef GPU_COMMAND_BUFFER_CLIENT_GL_HELPER_H_
#define GPU_COMMAND_BUFFER_CLIENT_GL_HELPER_H_
#include <memory>
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/gpu_export.h"
#include "ui/gfx/geometry/size.h"
namespace gfx {
class Point;
class Rect;
class Vector2d;
class Vector2dF;
} // namespace gfx
namespace gpu {
class ContextSupport;
class GLHelperScaling;
class ScopedGLuint {
public:
typedef void (gles2::GLES2Interface::*GenFunc)(GLsizei n, GLuint* ids);
typedef void (gles2::GLES2Interface::*DeleteFunc)(GLsizei n,
const GLuint* ids);
ScopedGLuint(gles2::GLES2Interface* gl,
GenFunc gen_func,
DeleteFunc delete_func)
: gl_(gl), id_(0u), delete_func_(delete_func) {
(gl_->*gen_func)(1, &id_);
}
operator GLuint() const { return id_; }
GLuint id() const { return id_; }
ScopedGLuint(const ScopedGLuint&) = delete;
ScopedGLuint& operator=(const ScopedGLuint&) = delete;
~ScopedGLuint() {
if (id_ != 0) {
(gl_->*delete_func_)(1, &id_);
}
}
private:
raw_ptr<gles2::GLES2Interface> gl_;
GLuint id_;
DeleteFunc delete_func_;
};
class ScopedBuffer : public ScopedGLuint {
public:
explicit ScopedBuffer(gles2::GLES2Interface* gl)
: ScopedGLuint(gl,
&gles2::GLES2Interface::GenBuffers,
&gles2::GLES2Interface::DeleteBuffers) {}
};
class ScopedFramebuffer : public ScopedGLuint {
public:
explicit ScopedFramebuffer(gles2::GLES2Interface* gl)
: ScopedGLuint(gl,
&gles2::GLES2Interface::GenFramebuffers,
&gles2::GLES2Interface::DeleteFramebuffers) {}
};
class ScopedTexture : public ScopedGLuint {
public:
explicit ScopedTexture(gles2::GLES2Interface* gl)
: ScopedGLuint(gl,
&gles2::GLES2Interface::GenTextures,
&gles2::GLES2Interface::DeleteTextures) {}
};
template <GLenum Target>
class ScopedBinder {
public:
typedef void (gles2::GLES2Interface::*BindFunc)(GLenum target, GLuint id);
ScopedBinder(gles2::GLES2Interface* gl, GLuint id, BindFunc bind_func)
: gl_(gl), bind_func_(bind_func) {
(gl_->*bind_func_)(Target, id);
}
ScopedBinder(const ScopedBinder&) = delete;
ScopedBinder& operator=(const ScopedBinder&) = delete;
virtual ~ScopedBinder() { (gl_->*bind_func_)(Target, 0); }
private:
raw_ptr<gles2::GLES2Interface> gl_;
BindFunc bind_func_;
};
template <GLenum Target>
class ScopedBufferBinder : ScopedBinder<Target> {
public:
ScopedBufferBinder(gles2::GLES2Interface* gl, GLuint id)
: ScopedBinder<Target>(gl, id, &gles2::GLES2Interface::BindBuffer) {}
};
template <GLenum Target>
class ScopedFramebufferBinder : ScopedBinder<Target> {
public:
ScopedFramebufferBinder(gles2::GLES2Interface* gl, GLuint id)
: ScopedBinder<Target>(gl, id, &gles2::GLES2Interface::BindFramebuffer) {}
};
template <GLenum Target>
class ScopedTextureBinder : ScopedBinder<Target> {
public:
ScopedTextureBinder(gles2::GLES2Interface* gl, GLuint id)
: ScopedBinder<Target>(gl, id, &gles2::GLES2Interface::BindTexture) {}
};
class I420Converter;
class ReadbackYUVInterface;
// Provides higher level operations on top of the gles2::GLES2Interface
// interfaces.
//
// TODO(crbug.com/870036): DEPRECATED. Please contact the crbug owner before
// adding any new dependencies on this code.
class GPU_EXPORT GLHelper {
public:
GLHelper(gles2::GLES2Interface* gl, ContextSupport* context_support);
GLHelper(const GLHelper&) = delete;
GLHelper& operator=(const GLHelper&) = delete;
~GLHelper();
enum ScalerQuality {
// Bilinear single pass, fastest possible.
SCALER_QUALITY_FAST = 1,
// Bilinear upscale + N * 50% bilinear downscales.
// This is still fast enough for most purposes and
// Image quality is nearly as good as the BEST option.
SCALER_QUALITY_GOOD = 2,
// Bicubic upscale + N * 50% bicubic downscales.
// Produces very good quality scaled images, but it's
// 2-8x slower than the "GOOD" quality, so it's not always
// worth it.
SCALER_QUALITY_BEST = 3,
};
// Copies the texture data out of |texture| into |out|.
// |src_starting_point| an origin point of the rectangle fragment of the
// texture to copy, |dst_size| - size of the rectangle to copy.
// No post processing is applied to the pixels. The
// texture is assumed to have a format of GL_RGBA or GL_BGRA_EXT with a pixel
// type of GL_UNSIGNED_BYTE.
//
// TODO(crbug.com/870036): DEPRECATED. This will be moved to be closer to its
// one caller soon.
void ReadbackTextureAsync(GLuint texture,
GLenum texture_target,
const gfx::Point& src_starting_point,
const gfx::Size& dst_size,
unsigned char* out,
size_t row_stride_bytes,
bool flip_y,
GLenum format,
base::OnceCallback<void(bool)> callback);
// Caches all intermediate textures and programs needed to scale any subset of
// a source texture at a fixed scaling ratio.
class ScalerInterface {
public:
ScalerInterface(const ScalerInterface&) = delete;
ScalerInterface& operator=(const ScalerInterface&) = delete;
virtual ~ScalerInterface() {}
// Scales a portion of |src_texture| and draws the result into
// |dest_texture| at offset (0, 0).
//
// |src_texture_size| is the full, allocated size of the |src_texture|. This
// is required for computing texture coordinate transforms (and only because
// the OpenGL ES 2.0 API lacks the ability to query this info).
//
// |src_offset| is the offset in the source texture corresponding to point
// (0,0) in the source/output coordinate spaces. This prevents the need for
// extra texture copies just to re-position the source coordinate system.
// TODO(crbug.com/775740): This must be set to whole-numbered values for
// now, until the implementation is modified to handle fractional offsets.
//
// |output_rect| selects the region to draw (in the scaled, not the source,
// coordinate space). This is used to save work in cases where only a
// portion needs to be re-scaled. The implementation will back-compute,
// internally, to determine the region of the |src_texture| to sample.
//
// WARNING: The output will always be placed at (0, 0) in the
// |dest_texture|, and not at |output_rect.origin()|.
//
// Note that the src_texture will have the min/mag filter set to GL_LINEAR
// and wrap_s/t set to CLAMP_TO_EDGE in this call.
void Scale(GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
GLuint dest_texture,
const gfx::Rect& output_rect) {
ScaleToMultipleOutputs(src_texture, src_texture_size, src_offset,
dest_texture, 0, output_rect);
}
// Same as above, but for shaders that output to two textures at once.
virtual void ScaleToMultipleOutputs(GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
GLuint dest_texture_0,
GLuint dest_texture_1,
const gfx::Rect& output_rect) = 0;
// Given the |src_texture_size|, |src_offset| and |output_rect| arguments
// that would be passed to Scale(), compute the region of pixels in the
// source texture that would be sampled to produce a scaled result. The
// result is stored in |sampling_rect|, along with the |offset| to the (0,0)
// point relative to |sampling_rect|'s origin.
//
// This is used by clients that need to know the minimal portion of a source
// buffer that must be copied without affecting Scale()'s results. This
// method also accounts for vertical flipping.
virtual void ComputeRegionOfInfluence(const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
const gfx::Rect& output_rect,
gfx::Rect* sampling_rect,
gfx::Vector2dF* offset) const = 0;
// Returns true if from:to represent the same scale ratio as that provided
// by this scaler.
virtual bool IsSameScaleRatio(const gfx::Vector2d& from,
const gfx::Vector2d& to) const = 0;
// Returns true if the scaler is assuming the source texture's content is
// vertically flipped.
virtual bool IsSamplingFlippedSource() const = 0;
// Returns true if the scaler will vertically-flip the output. Note that if
// both this method and IsSamplingFlippedSource() return true, then the
// scaler output will be right-side up.
virtual bool IsFlippingOutput() const = 0;
// Returns the format to use when calling glReadPixels() to read-back the
// output texture(s). This indicates whether the 0th and 2nd bytes in each
// RGBA quad have been swapped. If no swapping has occurred, this will
// return GL_RGBA. Otherwise, it will return GL_BGRA_EXT.
virtual GLenum GetReadbackFormat() const = 0;
protected:
ScalerInterface() {}
};
// Create a scaler that upscales or downscales at the given ratio
// (scale_from:scale_to). Returns null on invalid arguments.
//
// If |flipped_source| is true, then the scaler will assume the content of the
// source texture is vertically-flipped. This is required so that the scaler
// can correctly compute the sampling region.
//
// If |flip_output| is true, then the scaler will vertically-flip its output
// result. This is used when the output texture will be read-back into system
// memory, so that the rows do not have to be copied in reverse.
//
// If |swizzle| is true, the 0th and 2nd elements in each RGBA quad will be
// swapped. This is beneficial for optimizing read-back into system memory.
//
// WARNING: The returned scaler assumes both this GLHelper and its
// GLES2Interface/ContextSupport will outlive it!
std::unique_ptr<ScalerInterface> CreateScaler(ScalerQuality quality,
const gfx::Vector2d& scale_from,
const gfx::Vector2d& scale_to,
bool flipped_source,
bool flip_output,
bool swizzle);
// Create a pipeline that will (optionally) scale a source texture, and then
// convert it to I420 (YUV) planar form, delivering results in three separate
// output textures (one for each plane; see I420Converter::Convert()).
//
// Due to limitations in the OpenGL ES 2.0 API, the output textures will have
// a format of GL_RGBA. However, each RGBA "pixel" in these textures actually
// carries 4 consecutive pixels for the single-color-channel result plane.
// Therefore, when using the OpenGL APIs to read-back the image into system
// memory, note that a width 1/4 the actual |output_rect.width()| must be
// used.
//
// |flipped_source|, |flip_output|, and |swizzle| have the same meaning as
// that explained in the method comments for CreateScaler().
//
// If |use_mrt| is true, the pipeline will try to optimize the YUV conversion
// using the multi-render-target extension, if the platform is capable.
// |use_mrt| should only be set to false for testing.
//
// The benefit of using this pipeline is seen when these output textures are
// read back from GPU to CPU memory: The I420 format reduces the amount of
// data read back by a factor of ~2.6 (32bpp → 12bpp) which can greatly
// improve performance, for things like video screen capture, on platforms
// with slow GPU read-back performance.
//
// WARNING: The returned I420Converter instance assumes both this GLHelper and
// its GLES2Interface/ContextSupport will outlive it!
std::unique_ptr<I420Converter> CreateI420Converter(bool flipped_source,
bool flip_output,
bool swizzle,
bool use_mrt);
// Create a readback pipeline that will (optionally) scale a source texture,
// then convert it to YUV420 planar form, and finally read back that. This
// reduces the amount of memory read from GPU to CPU memory by a factor of 2.6
// (32bpp → 12bpp), which can be quite handy since readbacks have very limited
// speed on some platforms.
//
// If |use_mrt| is true, the pipeline will try to optimize the YUV conversion
// using the multi-render-target extension, if the platform is capable.
// |use_mrt| should only be set to false for testing.
//
// WARNING: The returned ReadbackYUVInterface instance assumes both this
// GLHelper and its GLES2Interface/ContextSupport will outlive it!
//
// TODO(crbug.com/870036): DEPRECATED. This will be removed soon, in favor of
// CreateI420Converter().
std::unique_ptr<ReadbackYUVInterface> CreateReadbackPipelineYUV(
bool vertically_flip_texture,
bool use_mrt);
// Returns a ReadbackYUVInterface instance that is lazily created and owned by
// this class. |use_mrt| is always true for these instances.
//
// TODO(crbug.com/870036): DEPRECATED. This will be moved to be closer to its
// one caller soon.
ReadbackYUVInterface* GetReadbackPipelineYUV(bool vertically_flip_texture);
// Returns the maximum number of draw buffers available,
// 0 if GL_EXT_draw_buffers is not available.
GLint MaxDrawBuffers();
protected:
class CopyTextureToImpl;
// Creates |copy_texture_to_impl_| if nullptr.
void InitCopyTextToImpl();
// Creates |scaler_impl_| if nullptr.
void InitScalerImpl();
enum ReadbackSwizzle { kSwizzleNone = 0, kSwizzleBGRA };
raw_ptr<gles2::GLES2Interface> gl_;
raw_ptr<ContextSupport> context_support_;
std::unique_ptr<CopyTextureToImpl> copy_texture_to_impl_;
std::unique_ptr<GLHelperScaling> scaler_impl_;
std::unique_ptr<ReadbackYUVInterface> shared_readback_yuv_flip_;
std::unique_ptr<ReadbackYUVInterface> shared_readback_yuv_noflip_;
// Memoized result for MaxDrawBuffers(), if >= 0. Otherwise, MaxDrawBuffers()
// will need to query the GL implementation.
GLint max_draw_buffers_ = -1;
};
// Splits an RGBA source texture's image into separate Y, U, and V planes. The U
// and V planes are half-width and half-height, according to the I420 standard.
class GPU_EXPORT I420Converter {
public:
I420Converter();
I420Converter(const I420Converter&) = delete;
I420Converter& operator=(const I420Converter&) = delete;
virtual ~I420Converter();
// Transforms a RGBA |src_texture| into three textures, each containing bytes
// in I420 planar form. See the GLHelper::ScalerInterface::Scale() method
// comments for the meaning/semantics of |src_texture_size|, |src_offset| and
// |output_rect|. If |optional_scaler| is not null, it will first be used to
// scale the source texture into an intermediate texture before generating the
// Y+U+V planes.
//
// See notes for CreateI420Converter() regarding the semantics of the output
// textures.
virtual void Convert(GLuint src_texture,
const gfx::Size& src_texture_size,
const gfx::Vector2dF& src_offset,
GLHelper::ScalerInterface* optional_scaler,
const gfx::Rect& output_rect,
GLuint y_plane_texture,
GLuint u_plane_texture,
GLuint v_plane_texture) = 0;
// Returns true if the converter is assuming the source texture's content is
// vertically flipped.
virtual bool IsSamplingFlippedSource() const = 0;
// Returns true if the converter will vertically-flip the output.
virtual bool IsFlippingOutput() const = 0;
// Returns the format to use when calling glReadPixels() to read-back the
// output textures. This indicates whether the 0th and 2nd bytes in each RGBA
// quad have been swapped. If no swapping has occurred, this will return
// GL_RGBA. Otherwise, it will return GL_BGRA_EXT.
virtual GLenum GetReadbackFormat() const = 0;
// Returns the texture size of the Y plane texture, based on the size of the
// |output_rect| that was given to Convert(). This will have a width of
// CEIL(output_rect_size.width() / 4), and the same height.
static gfx::Size GetYPlaneTextureSize(const gfx::Size& output_rect_size);
// Like GetYPlaneTextureSize(), except the returned size will have a width of
// CEIL(output_rect_size.width() / 8), and a height of
// CEIL(output_rect_size.height() / 2); because the chroma planes are half-
// length in both dimensions in the I420 format.
static gfx::Size GetChromaPlaneTextureSize(const gfx::Size& output_rect_size);
};
// Similar to a ScalerInterface, a YUV readback pipeline will cache a scaler and
// all intermediate textures and frame buffers needed to scale, crop, letterbox
// and read back a texture from the GPU into CPU-accessible RAM. A single
// readback pipeline can handle multiple outstanding readbacks at the same time.
//
// TODO(crbug.com/870036): DEPRECATED. This will be removed soon in favor of
// I420Converter.
class GPU_EXPORT ReadbackYUVInterface {
public:
ReadbackYUVInterface() {}
virtual ~ReadbackYUVInterface() {}
// Optional behavior: This sets a scaler to use to scale the inputs before
// planarizing. If null (or never called), then no scaling is performed.
virtual void SetScaler(std::unique_ptr<GLHelper::ScalerInterface> scaler) = 0;
// Returns the currently-set scaler, or null.
virtual GLHelper::ScalerInterface* scaler() const = 0;
// Returns true if the converter will vertically-flip the output.
virtual bool IsFlippingOutput() const = 0;
// Transforms a RGBA texture into I420 planar form, and then reads it back
// from the GPU into system memory. See the GLHelper::ScalerInterface::Scale()
// method comments for the meaning/semantics of |src_texture_size| and
// |output_rect|. The process is:
//
// 1. Scale the source texture to an intermediate texture.
// 2. Planarize, producing textures containing the Y, U, and V planes.
// 3. Read-back the planar data, copying it into the given output
// destination. |paste_location| specifies the where to place the output
// pixels: Rect(paste_location.origin(), output_rect.size()).
// 4. Run |callback| with true on success, false on failure (with no output
// modified).
virtual void ReadbackYUV(GLuint texture,
const gfx::Size& src_texture_size,
const gfx::Rect& output_rect,
int y_plane_row_stride_bytes,
unsigned char* y_plane_data,
int u_plane_row_stride_bytes,
unsigned char* u_plane_data,
int v_plane_row_stride_bytes,
unsigned char* v_plane_data,
const gfx::Point& paste_location,
base::OnceCallback<void(bool)> callback) = 0;
};
} // namespace gpu
#endif // GPU_COMMAND_BUFFER_CLIENT_GL_HELPER_H_
|