1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// An Interval<T> is a data structure used to represent a contiguous, mutable
// range over an ordered type T. Supported operations include testing a value to
// see whether it is included in the interval, comparing two intervals, and
// performing their union, intersection, and difference. For the purposes of
// this library, an "ordered type" is any type that induces a total order on its
// values via its less-than operator (operator<()). Examples of such types are
// basic arithmetic types like int and double as well as class types like
// string.
//
// An Interval<T> is represented using the usual C++ STL convention, namely as
// the half-open interval [min, max). A point p is considered to be contained in
// the interval iff p >= min && p < max. One consequence of this definition is
// that for any non-empty interval, min is contained in the interval but max is
// not. There is no canonical representation for the empty interval; rather, any
// interval where max <= min is regarded as empty. As a consequence, two empty
// intervals will still compare as equal despite possibly having different
// underlying min() or max() values. Also beware of the terminology used here:
// the library uses the terms "min" and "max" rather than "begin" and "end" as
// is conventional for the STL.
//
// T is required to be default- and copy-constructable, to have an assignment
// operator, and the full complement of comparison operators (<, <=, ==, !=, >=,
// >). A difference operator (operator-()) is required if Interval<T>::Length
// is used.
//
// For equality comparisons, Interval<T> supports an Equals() method and an
// operator==() which delegates to it. Two intervals are considered equal if
// either they are both empty or if their corresponding min and max fields
// compare equal. For ordered comparisons, Interval<T> also provides the
// comparator Interval<T>::Less and an operator<() which delegates to it.
// Unfortunately this comparator is currently buggy because its behavior is
// inconsistent with Equals(): two empty ranges with different representations
// may be regarded as equivalent by Equals() but regarded as different by
// the comparator. Bug 9240050 has been created to address this.
//
// This class is thread-compatible if T is thread-compatible. (See
// go/thread-compatible).
//
// Examples:
// Interval<int> r1(0, 100); // The interval [0, 100).
// EXPECT_TRUE(r1.Contains(0));
// EXPECT_TRUE(r1.Contains(50));
// EXPECT_FALSE(r1.Contains(100)); // 100 is just outside the interval.
//
// Interval<int> r2(50, 150); // The interval [50, 150).
// EXPECT_TRUE(r1.Intersects(r2));
// EXPECT_FALSE(r1.Contains(r2));
// EXPECT_TRUE(r1.IntersectWith(r2)); // Mutates r1.
// EXPECT_EQ(Interval<int>(50, 100), r1); // r1 is now [50, 100).
//
// Interval<int> r3(1000, 2000); // The interval [1000, 2000).
// EXPECT_TRUE(r1.IntersectWith(r3)); // Mutates r1.
// EXPECT_TRUE(r1.Empty()); // Now r1 is empty.
// EXPECT_FALSE(r1.Contains(r1.min())); // e.g. doesn't contain its own min.
#ifndef NET_BASE_INTERVAL_H_
#define NET_BASE_INTERVAL_H_
#include <stddef.h>
#include <algorithm>
#include <functional>
#include <ostream>
#include <utility>
#include <vector>
namespace net {
template <typename T>
class Interval {
private:
// TODO(rtenneti): Implement after suupport for std::decay.
#if 0
// Type trait for deriving the return type for Interval::Length. If
// operator-() is not defined for T, then the return type is void. This makes
// the signature for Length compile so that the class can be used for such T,
// but code that calls Length would still generate a compilation error.
template <typename U>
class DiffTypeOrVoid {
private:
template <typename V>
static auto f(const V* v) -> decltype(*v - *v);
template <typename V>
static void f(...);
public:
using type = typename std::decay<decltype(f<U>(0))>::type;
};
#endif
public:
// Compatibility alias.
using Less = std::less<Interval>;
// Construct an Interval representing an empty interval.
Interval() : min_(), max_() {}
// Construct an Interval representing the interval [min, max). If min < max,
// the constructed object will represent the non-empty interval containing all
// values from min up to (but not including) max. On the other hand, if min >=
// max, the constructed object will represent the empty interval.
Interval(const T& min, const T& max) : min_(min), max_(max) {}
const T& min() const { return min_; }
const T& max() const { return max_; }
void SetMin(const T& t) { min_ = t; }
void SetMax(const T& t) { max_ = t; }
void Set(const T& min, const T& max) {
SetMin(min);
SetMax(max);
}
void Clear() { *this = {}; }
void CopyFrom(const Interval& i) { *this = i; }
bool Equals(const Interval& i) const { return *this == i; }
bool Empty() const { return min() >= max(); }
// Returns the length of this interval. The value returned is zero if
// IsEmpty() is true; otherwise the value returned is max() - min().
const T Length() const { return (min_ >= max_ ? min_ : max_) - min_; }
// Returns true iff t >= min() && t < max().
bool Contains(const T& t) const { return min() <= t && max() > t; }
// Returns true iff *this and i are non-empty, and *this includes i. "*this
// includes i" means that for all t, if i.Contains(t) then this->Contains(t).
// Note the unintuitive consequence of this definition: this method always
// returns false when i is the empty interval.
bool Contains(const Interval& i) const {
return !Empty() && !i.Empty() && min() <= i.min() && max() >= i.max();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
bool Intersects(const Interval& i) const {
return !Empty() && !i.Empty() && min() < i.max() && max() > i.min();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
// Furthermore, if the intersection is non-empty and the intersection pointer
// is not null, this method stores the calculated intersection in
// *intersection.
bool Intersects(const Interval& i, Interval* out) const;
// Sets *this to be the intersection of itself with i. Returns true iff
// *this was modified.
bool IntersectWith(const Interval& i);
// Calculates the smallest interval containing both *this i, and updates *this
// to represent that interval, and returns true iff *this was modified.
bool SpanningUnion(const Interval& i);
// Determines the difference between two intervals as in
// Difference(Interval&, vector*), but stores the results directly in out
// parameters rather than dynamically allocating an Interval* and appending
// it to a vector. If two results are generated, the one with the smaller
// value of min() will be stored in *lo and the other in *hi. Otherwise (if
// fewer than two results are generated), unused arguments will be set to the
// empty interval (it is possible that *lo will be empty and *hi non-empty).
// The method returns true iff the intersection of *this and i is non-empty.
bool Difference(const Interval& i, Interval* lo, Interval* hi) const;
friend bool operator==(const Interval& a, const Interval& b) {
bool ae = a.Empty();
bool be = b.Empty();
if (ae && be)
return true; // All empties are equal.
if (ae != be)
return false; // Empty cannot equal nonempty.
return a.min() == b.min() && a.max() == b.max();
}
friend bool operator!=(const Interval& a, const Interval& b) {
return !(a == b);
}
// Defines a comparator which can be used to induce an order on Intervals, so
// that, for example, they can be stored in an ordered container such as
// std::set. The ordering is arbitrary, but does provide the guarantee that,
// for non-empty intervals X and Y, if X contains Y, then X <= Y.
// TODO(kosak): The current implementation of this comparator has a problem
// because the ordering it induces is inconsistent with that of Equals(). In
// particular, this comparator does not properly consider all empty intervals
// equivalent. Bug b/9240050 has been created to track this.
friend bool operator<(const Interval& a, const Interval& b) {
return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max());
}
friend std::ostream& operator<<(std::ostream& out, const Interval& i) {
return out << "[" << i.min() << ", " << i.max() << ")";
}
private:
T min_; // Inclusive lower bound.
T max_; // Exclusive upper bound.
};
//==============================================================================
// Implementation details: Clients can stop reading here.
template <typename T>
bool Interval<T>::Intersects(const Interval& i, Interval* out) const {
if (!Intersects(i))
return false;
if (out != nullptr) {
*out = Interval(std::max(min(), i.min()), std::min(max(), i.max()));
}
return true;
}
template <typename T>
bool Interval<T>::IntersectWith(const Interval& i) {
if (Empty())
return false;
bool modified = false;
if (i.min() > min()) {
SetMin(i.min());
modified = true;
}
if (i.max() < max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::SpanningUnion(const Interval& i) {
if (i.Empty())
return false;
if (Empty()) {
*this = i;
return true;
}
bool modified = false;
if (i.min() < min()) {
SetMin(i.min());
modified = true;
}
if (i.max() > max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::Difference(const Interval& i,
Interval* lo,
Interval* hi) const {
// Initialize *lo and *hi to empty
*lo = {};
*hi = {};
if (Empty())
return false;
if (i.Empty()) {
*lo = *this;
return false;
}
if (min() < i.max() && min() >= i.min() && max() > i.max()) {
// [------ this ------)
// [------ i ------)
// [-- result ---)
*hi = Interval(i.max(), max());
return true;
}
if (max() > i.min() && max() <= i.max() && min() < i.min()) {
// [------ this ------)
// [------ i ------)
// [- result -)
*lo = Interval(min(), i.min());
return true;
}
if (min() < i.min() && max() > i.max()) {
// [------- this --------)
// [---- i ----)
// [ R1 ) [ R2 )
// There are two results: R1 and R2.
*lo = Interval(min(), i.min());
*hi = Interval(i.max(), max());
return true;
}
if (min() >= i.min() && max() <= i.max()) {
// [--- this ---)
// [------ i --------)
// Intersection is <this>, so difference yields the empty interval.
return true;
}
*lo = *this; // No intersection.
return false;
}
} // namespace net
#endif // NET_BASE_INTERVAL_H_
|